scholarly journals Completeness of Ordered Fields and a Trio of Classical Series Tests

2016 ◽  
Vol 2016 ◽  
pp. 1-6
Author(s):  
Robert Kantrowitz ◽  
Michael M. Neumann

This article explores the fate of the infinite series tests of Dirichlet, Dedekind, and Abel in the context of an arbitrary ordered field. It is shown that each of these three tests characterizes the Dedekind completeness of an Archimedean ordered field; specifically, none of the three is valid in any proper subfield of R. The argument hinges on a contractive-type property for sequences in Archimedean ordered fields that are bounded and strictly increasing. For an arbitrary ordered field, it turns out that each of the tests of Dirichlet and Dedekind is equivalent to the sequential completeness of the field.

1989 ◽  
Vol 41 (5) ◽  
pp. 808-829 ◽  
Author(s):  
Victoria Powers

Marshall's Spaces of Orderings are an abstract setting for the reduced theory of quadratic forms and Witt rings. A Space of Orderings consists of an abelian group of exponent 2 and a subset of the character group which satisfies certain axioms. The axioms are modeled on the case where the group is an ordered field modulo the sums of squares of the field and the subset of the character group is the set of orders on the field. There are other examples, arising from ordered semi-local rings [4, p. 321], ordered skew fields [2, p. 92], and planar ternary rings [3]. In [4], Marshall showed that a Space of Orderings in which the group is finite arises from an ordered field. In further papers Marshall used these abstract techniques to provide new, more elegant proofs of results known for ordered fields, and to prove theorems previously unknown in the field setting.


2004 ◽  
Vol 2004 (69) ◽  
pp. 3799-3816
Author(s):  
S. K. Acharyya ◽  
K. C. Chattopadhyay ◽  
Partha Pratim Ghosh

The main aim of this paper is to provide a construction of the Banaschewski compactification of a zero-dimensional Hausdorff topological space as a structure space of a ring of ordered field-valued continuous functions on the space, and thereby exhibit the independence of the construction from any completeness axiom for an ordered field. In the process of describing this construction we have generalized the classical versions of M. H. Stone's theorem, the Banach-Stone theorem, and the Gelfand-Kolmogoroff theorem. The paper is concluded with a conjecture of a split in the class of all zero-dimensional but not strongly zero-dimensional Hausdorff topological spaces into three classes that are labeled by inequalities between three compactifications ofX, namely, the Stone-Čech compactificationβX, the Banaschewski compactificationβ0X, and the structure space𝔐X,Fof the lattice-ordered commutative ringℭ(X,F)of all continuous functions onXtaking values in the ordered fieldF, equipped with its order topology. Some open problems are also stated.


1971 ◽  
Vol 36 (3) ◽  
pp. 441-444 ◽  
Author(s):  
Abraham Robinson

The notion of algebraic closedness plays an important part in the theory of commutative fields. The corresponding notion in the theory of ordered fields is (not only intuitively but in a sense which can be made precise in a metamathematical framework, compare [4]) that of a real closed ordered field. Several suggestions have been made (see [2] and [8]) for the formulation of corresponding concepts in the theory of groups and in the theory of skew fields (division rings, noncommutative fields). Here we present a concept of this kind, which preserves the principal metamathematical properties of algebraically closed commutative fields and which applies to a wide class of first order theories K, including the theories of commutative and of skew fields and the theories of commutative and of general groups.


1986 ◽  
Vol 51 (4) ◽  
pp. 981-991 ◽  
Author(s):  
Şerban A. Basarab

In his famous paper [1] on the elementary theory of finite fields Ax considered fields K with the property that every absolutely irreducible variety defined over K has K-rational points. These fields have been called pseudo algebraically closed (pac) and also regularly closed, and extensively studied by Jarden, Éršov, Fried, Wheeler and others, culminating with the basic works [8] and [11].The above algebraic-geometric definition of pac fields can be put into the following equivalent model-theoretic version: K is existentially complete (ec) relative to the first order language of fields into each regular field extension of K. It has been this characterization of pac fields which the author extended in [2] to ordered fields. An ordered field (K, <) is called in [2] pseudo real closed (prc) if (K, <) is ec in every ordered field extension (L, <) with L regular over K. The concept of pre ordered field has also been introduced by McKenna in his thesis [15] by analogy with the original algebraic-geometric definition of pac fields.Given a positive integer e, a system K = (K; P1, …, Pe), where K is a field and P1, …, Pe are orders of K (identified with the corresponding positive cones), is called an e-fold ordered field (e-field). In his thesis [9] van den Dries developed a model theory for e-fields. The main result proved in [9, Chapter II] states that the theory e-OF of e-fields is model con. panionable, and the models of the model companion e-OF are explicitly described.


2018 ◽  
Vol 83 (2) ◽  
pp. 617-633
Author(s):  
PHILIP EHRLICH ◽  
ELLIOT KAPLAN

AbstractIn [16], the algebraico-tree-theoretic simplicity hierarchical structure of J. H. Conway’s ordered field ${\bf{No}}$ of surreal numbers was brought to the fore and employed to provide necessary and sufficient conditions for an ordered field to be isomorphic to an initial subfield of ${\bf{No}}$, i.e., a subfield of ${\bf{No}}$ that is an initial subtree of ${\bf{No}}$. In this sequel to [16], analogous results for ordered abelian groups and ordered domains are established which in turn are employed to characterize the convex subgroups and convex subdomains of initial subfields of ${\bf{No}}$ that are themselves initial. It is further shown that an initial subdomain of ${\bf{No}}$ is discrete if and only if it is a subdomain of ${\bf{No}}$’s canonical integer part ${\bf{Oz}}$ of omnific integers. Finally, making use of class models the results of [16] are extended by showing that the theories of nontrivial divisible ordered abelian groups and real-closed ordered fields are the sole theories of nontrivial densely ordered abelian groups and ordered fields all of whose models are isomorphic to initial subgroups and initial subfields of ${\bf{No}}$.


1993 ◽  
Vol 58 (3) ◽  
pp. 915-930 ◽  
Author(s):  
Rafel Farré

AbstractIn well-known papers ([A-K1], [A-K2], and [E]) J. Ax, S. Kochen, and J. Ershov prove a transfer theorem for henselian valued fields. Here we prove an analogue for henselian valued and ordered fields. The orders for which this result apply are the usual orders and also the higher level orders introduced by E. Becker in [Bl] and [B2]. With certain restrictions, two henselian valued and ordered fields are elementarily equivalent if and only if their value groups (with a little bit more structure) and their residually ordered residue fields (a henselian valued and ordered field induces in a natural way an order in its residue field) are elementarily equivalent. Similar results are proved for elementary embeddings and ∀-extensions (extensions where the structure is existentially closed).


2001 ◽  
Vol 66 (3) ◽  
pp. 1231-1258 ◽  
Author(s):  
Philip Ehrlich

Introduction. In his monograph On Numbers and Games [7], J. H. Conway introduced a real-closed field containing the reals and the ordinals as well as a great many other numbers including ω, ω, /2, 1/ω, and ω − π to name only a few. Indeed, this particular real-closed field, which Conway calls No, is so remarkably inclusive that, subject to the proviso that numbers—construed here as members of ordered “number” fields—be individually definable in terms of sets of von Neumann-Bernays-Gödel set theory with Global Choice, henceforth NBG [cf. 21, Ch. 4], it may be said to contain “All Numbers Great and Small.” In this respect, No bears much the same relation to ordered fields that the system of real numbers bears to Archimedean ordered fields. This can be made precise by saying that whereas the ordered field of reals is (up to isomorphism) the unique homogeneous universal Archimedean ordered field, No is (up to isomorphism) the unique homogeneous universal orderedfield [14]; also see [10], [12], [13].However, in addition to its distinguished structure as an ordered field, No has a rich hierarchical structure that (implicitly) emerges from the recursive clauses in terms of which it is defined. This algebraico-tree-theoretic structure, or simplicity hierarchy, as we have called it [15], depends upon No's (implicit) structure as a lexicographically ordered binary tree and arises from the fact that the sums and products of any two members of the tree are the simplest possible elements of the tree consistent with No's structure as an ordered group and an ordered field, respectively, it being understood that x is simpler than y just in case x is a predecessor of y in the tree.


Author(s):  
R. H. Redfield

AbstractA lattice-ordered power series algebra of a totally ordered field over a rooted abelian group may be constructed in a way that is arbitrary only in requiring that a factor set be chosen in the field and an extended total order be chosen on the group modulo its torsion subgroup. The resulting algebra is a field if and only if the subalgebra of elements with torsion support form a field. It follows that if the torsion subgroup may be independently embedded in the algebraic closure of the totally ordered field, or if the resulting algebra has no zero-divisors, then the algebra is a field. The set of supporting subsets for the power series may be characterized abstractly in such a way that previous representation theorems of lattice-ordered fields into power series algebras may be applied to produce representations into power series fields.


2002 ◽  
Vol 67 (2) ◽  
pp. 557-578 ◽  
Author(s):  
António M. Fernandes ◽  
Fernando Ferreira

AbstractThis paper develops the very basic notions of analysis in a weak second-order theory of arithmetic BTFA whose provably total functions are the polynomial time computable functions. We formalize within BTFA the real number system and the notion of a continuous real function of a real variable. The theory BTFA is able to prove the intermediate value theorem, wherefore it follows that the system of real numbers is a real closed ordered field. In the last section of the paper, we show how to interpret the theory BTFA in Robinson's theory of arithmetic Q. This fact entails that the elementary theory of the real closed ordered fields is interpretable in Q.


2012 ◽  
Vol 18 (1) ◽  
pp. 1-45 ◽  
Author(s):  
Philip Ehrlich

AbstractIn his monograph On Numbers and Games, J. H. Conway introduced a real-closed field containing the reals and the ordinals as well as a great many less familiar numbers including −ω, ω/2, 1/ω, and ω − π to name only a few. Indeed, this particular real-closed field, which Conway calls No, is so remarkably inclusive that, subject to the proviso that numbers—construed here as members of ordered fields—be individually definable in terms of sets of NBG (von Neumann–Bernays–Gödel set theory with global choice), it may be said to contain “All Numbers Great and Small.” In this respect, No bears much the same relation to ordered fields that the system ℝ of real numbers bears to Archimedean ordered fields.In Part I of the present paper, we suggest that whereas ℝ should merely be regarded as constituting an arithmetic continuum (modulo the Archimedean axiom), No may be regarded as a sort of absolute arithmetic continuum (modulo NBG), and in Part II we draw attention to the unifying framework No provides not only for the reals and the ordinals but also for an array of non-Archimedean ordered number systems that have arisen in connection with the theories of non-Archimedean ordered algebraic and geometric systems, the theory of the rate of growth of real functions and nonstandard analysis.In addition to its inclusive structure as an ordered field, the system No of surreal numbers has a rich algebraico-tree-theoretic structure—a simplicity hierarchical structure—that emerges from the recursive clauses in terms of which it is defined. In the development of No outlined in the present paper, in which the surreals emerge vis-à-vis a generalization of the von Neumann ordinal construction, the simplicity hierarchical features of No are brought to the fore and play central roles in the aforementioned unification of systems of numbers great and small and in some of the more revealing characterizations of No as an absolute continuum.


Sign in / Sign up

Export Citation Format

Share Document