scholarly journals Real-Time Monitoring and Fault Diagnosis of a Low Power Hub Motor Using Feedforward Neural Network

2016 ◽  
Vol 2016 ◽  
pp. 1-13 ◽  
Author(s):  
Mehmet Şimşir ◽  
Raif Bayır ◽  
Yılmaz Uyaroğlu

Low power hub motors are widely used in electromechanical systems such as electrical bicycles and solar vehicles due to their robustness and compact structure. Such systems driven by hub motors (in wheel motors) encounter previously defined and undefined faults under operation. It may inevitably lead to the interruption of the electromechanical system operation; hence, economic losses take place at certain times. Therefore, in order to maintain system operation sustainability, the motor should be precisely monitored and the faults are diagnosed considering various significant motor parameters. In this study, the artificial feedforward backpropagation neural network approach is proposed to real-time monitor and diagnose the faults of the hub motor by measuring seven main system parameters. So as to construct a necessary model, we trained the model, using a data set consisting of 4160 samples where each has 7 parameters, by the MATLAB environment until the best model is obtained. The results are encouraging and meaningful for the specific motor and the developed model may be applicable to other types of hub motors. The prosperous model of the whole system was embedded into Arduino Due microcontroller card and the mobile real-time monitoring and fault diagnosis system prototype for hub motor was designed and manufactured.

Processes ◽  
2021 ◽  
Vol 9 (4) ◽  
pp. 634
Author(s):  
Sujeong Baek ◽  
Dong Oh Kim

In manufacturing systems, pick-up operations by vacuum grippers may fail owing to manufacturing errors in an object’s surface that are within the allowable tolerance limits. In such situations, manual interference is required to resume system operation, which results in considerable loss of time as well as economic losses. Although vacuum grippers have many advantages and are widely used in the industry, it is highly difficult to directly monitor the current machine status and provide appropriate recovery feedback for stable operation. Therefore, this paper proposes a method to detect the success or failure of a suction operation in advance by analyzing the amount of outlet air pressure in the Venturi line. This was achieved by installing an air pressure sensor on the Venturi line to predict whether the current suction action will be successful. Through empirical experiments, it was found that downward movements in the z-axis of the vacuum gripper can easily rectify a faulty gripper suction operation. Real-time monitoring results verified that predictive process adjustment of the pick-up operation can be performed by modifying the z-position of the vacuum gripper.


Water ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 1547
Author(s):  
Jian Sha ◽  
Xue Li ◽  
Man Zhang ◽  
Zhong-Liang Wang

Accurate real-time water quality prediction is of great significance for local environmental managers to deal with upcoming events and emergencies to develop best management practices. In this study, the performances in real-time water quality forecasting based on different deep learning (DL) models with different input data pre-processing methods were compared. There were three popular DL models concerned, including the convolutional neural network (CNN), long short-term memory neural network (LSTM), and hybrid CNN–LSTM. Two types of input data were applied, including the original one-dimensional time series and the two-dimensional grey image based on the complete ensemble empirical mode decomposition algorithm with adaptive noise (CEEMDAN) decomposition. Each type of input data was used in each DL model to forecast the real-time monitoring water quality parameters of dissolved oxygen (DO) and total nitrogen (TN). The results showed that (1) the performances of CNN–LSTM were superior to the standalone model CNN and LSTM; (2) the models used CEEMDAN-based input data performed much better than the models used the original input data, while the improvements for non-periodic parameter TN were much greater than that for periodic parameter DO; and (3) the model accuracies gradually decreased with the increase of prediction steps, while the original input data decayed faster than the CEEMDAN-based input data and the non-periodic parameter TN decayed faster than the periodic parameter DO. Overall, the input data preprocessed by the CEEMDAN method could effectively improve the forecasting performances of deep learning models, and this improvement was especially significant for non-periodic parameters of TN.


2020 ◽  
Vol 2020 ◽  
pp. 1-6
Author(s):  
Jian-ye Yuan ◽  
Xin-yuan Nan ◽  
Cheng-rong Li ◽  
Le-le Sun

Considering that the garbage classification is urgent, a 23-layer convolutional neural network (CNN) model is designed in this paper, with the emphasis on the real-time garbage classification, to solve the low accuracy of garbage classification and recycling and difficulty in manual recycling. Firstly, the depthwise separable convolution was used to reduce the Params of the model. Then, the attention mechanism was used to improve the accuracy of the garbage classification model. Finally, the model fine-tuning method was used to further improve the performance of the garbage classification model. Besides, we compared the model with classic image classification models including AlexNet, VGG16, and ResNet18 and lightweight classification models including MobileNetV2 and SuffleNetV2 and found that the model GAF_dense has a higher accuracy rate, fewer Params, and FLOPs. To further check the performance of the model, we tested the CIFAR-10 data set and found the accuracy rates of the model (GAF_dense) are 0.018 and 0.03 higher than ResNet18 and SufflenetV2, respectively. In the ImageNet data set, the accuracy rates of the model (GAF_dense) are 0.225 and 0.146 higher than Resnet18 and SufflenetV2, respectively. Therefore, the garbage classification model proposed in this paper is suitable for garbage classification and other classification tasks to protect the ecological environment, which can be applied to classification tasks such as environmental science, children’s education, and environmental protection.


2015 ◽  
Vol 137 (6) ◽  
Author(s):  
Yanfang Wang ◽  
Saeed Salehi

Real-time drilling optimization improves drilling performance by providing early warnings in operation Mud hydraulics is a key aspect of drilling that can be optimized by access to real-time data. Different from the investigated references, reliable prediction of pump pressure provides an early warning of circulation problems, washout, lost circulation, underground blowout, and kicks. This will help the driller to make necessary corrections to mitigate potential problems. In this study, an artificial neural network (ANN) model to predict hydraulics was implemented through the fitting tool of matlab. Following the determination of the optimum model, the sensitivity analysis of input parameters on the created model was investigated by using forward regression method. Next, the remaining data from the selected well samples was applied for simulation to verify the quality of the developed model. The novelty is this paper is validation of computer models with actual field data collected from an operator in LA. The simulation result was promising as compared with collected field data. This model can accurately predict pump pressure versus depth in analogous formations. The result of this work shows the potential of the approach developed in this work based on NN models for predicting real-time drilling hydraulics.


2021 ◽  
Vol 9 (2) ◽  
pp. 119
Author(s):  
Lúcia Moreira ◽  
Roberto Vettor ◽  
Carlos Guedes Soares

In this paper, simulations of a ship travelling on a given oceanic route were performed by a weather routing system to provide a large realistic navigation data set, which could represent a collection of data obtained on board a ship in operation. This data set was employed to train a neural network computing system in order to predict ship speed and fuel consumption. The model was trained using the Levenberg–Marquardt backpropagation scheme to establish the relation between the ship speed and the respective propulsion configuration for the existing sea conditions, i.e., the output torque of the main engine, the revolutions per minute of the propulsion shaft, the significant wave height, and the peak period of the waves, together with the relative angle of wave encounter. Additional results were obtained by also using the model to train the relationship between the same inputs used to determine the speed of the ship and the fuel consumption. A sensitivity analysis was performed to analyze the artificial neural network capability to forecast the ship speed and fuel oil consumption without information on the status of the engine (the revolutions per minute and torque) using as inputs only the information of the sea state. The results obtained with the neural network model show very good accuracy both in the prediction of the speed of the vessel and the fuel consumption.


Sensors ◽  
2021 ◽  
Vol 21 (4) ◽  
pp. 1421
Author(s):  
Chih-Chiang Wei ◽  
Chen-Chia Hsu

This study developed a real-time rainfall forecasting system that can predict rainfall in a particular area a few hours before a typhoon’s arrival. The reflectivity of nine elevation angles obtained from the volume coverage pattern 21 Doppler radar scanning strategy and ground-weather data of a specific area were used for accurate rainfall prediction. During rainfall prediction and analysis, rainfall retrievals were first performed to select the optimal radar scanning elevation angle for rainfall prediction at the current time. Subsequently, forecasting models were established using a single reflectivity and all elevation angles (10 prediction submodels in total) to jointly predict real-time rainfall and determine the optimal predicted values. This study was conducted in southeastern Taiwan and included three onshore weather stations (Chenggong, Taitung, and Dawu) and one offshore weather station (Lanyu). Radar reflectivities were collected from Hualien weather surveillance radar. The data for a total of 14 typhoons that affected the study area in 2008–2017 were collected. The gated recurrent unit (GRU) neural network was used to establish the forecasting model, and extreme gradient boosting and multiple linear regression were used as the benchmarks. Typhoons Nepartak, Meranti, and Megi were selected for simulation. The results revealed that the input data set merged with weather-station data, and radar reflectivity at the optimal elevation angle yielded optimal results for short-term rainfall forecasting. Moreover, the GRU neural network can obtain accurate predictions 1, 3, and 6 h before typhoon occurrence.


2017 ◽  
Vol 17 (4) ◽  
pp. 850-868 ◽  
Author(s):  
William Soo Lon Wah ◽  
Yung-Tsang Chen ◽  
Gethin Wyn Roberts ◽  
Ahmed Elamin

Analyzing changes in vibration properties (e.g. natural frequencies) of structures as a result of damage has been heavily used by researchers for damage detection of civil structures. These changes, however, are not only caused by damage of the structural components, but they are also affected by the varying environmental conditions the structures are faced with, such as the temperature change, which limits the use of most damage detection methods presented in the literature that did not account for these effects. In this article, a damage detection method capable of distinguishing between the effects of damage and of the changing environmental conditions affecting damage sensitivity features is proposed. This method eliminates the need to form the baseline of the undamaged structure using damage sensitivity features obtained from a wide range of environmental conditions, as conventionally has been done, and utilizes features from two extreme and opposite environmental conditions as baselines. To allow near real-time monitoring, subsequent measurements are added one at a time to the baseline to create new data sets. Principal component analysis is then introduced for processing each data set so that patterns can be extracted and damage can be distinguished from environmental effects. The proposed method is tested using a two-dimensional truss structure and validated using measurements from the Z24 Bridge which was monitored for nearly a year, with damage scenarios applied to it near the end of the monitoring period. The results demonstrate the robustness of the proposed method for damage detection under changing environmental conditions. The method also works despite the nonlinear effects produced by environmental conditions on damage sensitivity features. Moreover, since each measurement is allowed to be analyzed one at a time, near real-time monitoring is possible. Damage progression can also be given from the method which makes it advantageous for damage evolution monitoring.


Sign in / Sign up

Export Citation Format

Share Document