scholarly journals Kaybob Revisited: What We Have Learned about Compressor Stability from Self-Excited Whirling

2016 ◽  
Vol 2016 ◽  
pp. 1-17
Author(s):  
Edgar J. Gunter ◽  
Brian K. Weaver

The Kaybob compressor failure of 1971 was an excellent historic example of rotordynamic instability and the design factors that affect this phenomenon. In the case of Kaybob, the use of poorly designed bearings produced unstable whirling in both the low and high pressure compressors. This required over five months of vibration troubleshooting and redesign along with over 100 million modern U.S. dollars in total costs and lost revenue. In this paper, the history of the Kaybob compressor failure is discussed in detail including a discussion of the ineffective bearing designs that were considered. Modern bearing and rotordynamic analysis tools are then employed to study both designs that were considered along with new designs for the bearings that could have ultimately restored stability to the machine. These designs include four-pad, load-between-pad bearings and squeeze film dampers with a central groove. Simple relationships based on the physics of the system are also used to show how the bearings could be tuned to produce optimum bearing stiffness and damping of the rotor vibration, producing insights which can inform the designers as they perform more comprehensive analyses of these systems.

1975 ◽  
Vol 97 (4) ◽  
pp. 1366-1370 ◽  
Author(s):  
Martin H. Sadd ◽  
A. Kent Stiffler

Gaseous squeeze film dampers are analyzed to determine the effect of periodic disturbance amplitude on the dynamic performance. Both circular and rectangular parallel surfaces are investigated. A solution of the nonlinear Reynolds equation is obtained by expanding the pressure in powers of the squeeze number σ, retaining up to and including terms 0(σ2). The time dependent load characteristics are found. The effect of disturbance amplitude on the film stiffness and damping is given.


1995 ◽  
Vol 117 (3) ◽  
pp. 490-497 ◽  
Author(s):  
J. Y. Zhao ◽  
E. J. Hahn

This paper outlines an improved squeeze film damper which reduces significantly the dependence of the stiffness of conventional squeeze film dampers on the vibration amplitudes. This improved damper consists of a conventional squeeze film damper with a flexibility supported outer ring. This secondary flexible support is considered to be massless, and to have a constant stiffness and damping. Assuming the short bearing approximation and the ‘π’ film cavitation model, the performances of this damper in preventing bistable operation and sub-synchronous and nonsynchronous motions are theoretically demonstrated for a rigid rotor supported on a squeeze film damper. Blade-loss simulations are carried out numerically.


1977 ◽  
Vol 99 (1) ◽  
pp. 57-64 ◽  
Author(s):  
E. J. Gunter ◽  
L. E. Barrett ◽  
P. E. Allaire

This paper examines the effect of squeeze-film damper bearings on the steady state and transient unbalance response of aircraft engine rotors. The nonlinear effects of the damper are examined, and the variance of the motion due to unbalance, static pressurization, retainer springs, and rotor preload is shown. The nonlinear analysis is performed using a time-transient method incorporating a solution of the Reynolds equation at each instant in time. The analysis shows that excessive stiffness in the damper results in large journal amplitudes and transmission of bearing forces to the engine casing which greatly exceed the unbalance forces. Reduction of the total effective bearing stiffness through static pressurization and rotor preload is considered. The reduction in stiffness allows the damping generated by the bearing to be more effective in attenuating rotor forces. It is observed that in an unpressurized damper, the dynamic transmissibility will exceed unity when the unbalance eccentricity exceeds approximately 50 percent of the damper clearance for the relatively wide range of conditions examined in this study.


Author(s):  
Christian Ziese ◽  
Cornelius Irmscher ◽  
Steffen Nitzschke ◽  
Christian Daniel ◽  
Elmar Woschke ◽  
...  

Abstract This contribution investigates the influence of outgassing processes on the vibration behaviour of a hydrodynamic bearing supported turbocharger rotor. The examined rotor is supported radially by floating rings with outer squeeze-film damping and axially by thrust bearings. Due to the highly non-linear bearing properties, the rotor can be excited via the lubricating film, which results in sub-synchronous vibrations known as oil-whirl and oil-whip phenomena. A significant influence on the occurrence of oil-whip phenomena is attributed to the bearing stiffness and damping, which depend both on the kinematic state of the supporting elements and the thermal condition as well as the occurrence of outgassing processes. For modelling the bearing behaviour, the Reynolds equation with mass-conserving cavitation regarding the two-phase model and the 3D energy as well as heat conduction equation is solved. To evaluate the impact of cavitation, run-up simulations are carried out assuming a fully (Half-Sommerfeld) or partially filled lubrication gap. The resulting rotor responses are compared with the shaft motion measurement. Also, the normalized eccentricity, the minimum lubricant fraction and the thermal bearing condition are discussed.


Author(s):  
Zhu Changsheng

Abstract Based on lots of data from an experiment of a high-speed rotor supported on squeeze film dampers, this paper analyses that how the bistable jump affects the reliability of squeeze film dampers, if the rotor system has to frequently pass through the bistable oparation speed range. It is shown that the change of the rotor vibration amplitudes caused by times of passed through bistable operation speed range is more significant than that caused by steady operating time. The users must pay much attention to the bistable jump phenomenon in the successful application of squeeze film dampers.


Author(s):  
Vivek V. Choudhry ◽  
John M. Vance

In a previous ASME paper the second author reported experiments on wire mesh bearing dampers (WMD) incorporated in a power turbine rotor-bearing system in order to enable a direct comparison between WMD and squeeze film dampers (SFD). The results showed that both WMD and SFD perform equally well for reducing the rotordynamic amplitudes of vibration. Moreover the WMD were found to have significant advantages over SFD. The damping provided by the wire mesh is independent of temperature changes and presence of turbine oil. Experiments by another investigator showed that WMD are capable of sustaining more than twice the unbalance as compared to SFD, which promises possible application to withstand blade loss loads. This paper presents empirically developed non-dimensional design equations for WMD, capable of predicting stiffness and damping for a wire mesh ‘donut’ subject to changes in various design, installation, and operational parameters.


Author(s):  
Stephen L. Edney

It is well established that classical short bearing theory can be applied to assess squeeze film dampers whirling in circular centered orbits. This theory yields accurate values for the stiffness and damping coefficients for designs with small length-to-diameter (L/D) ratios (typically less than 0.5) whirling at amplitudes of less than half the damper radial clearance. For L/D ratio designs above 0.5 and/or whirling amplitudes approaching the damper radial clearance, the short bearing theory increasingly overestimates the stiffness and damping coefficients that stretch its applicability for some designs. There are two limitations with the classical theory that compromise the solution at high L/D ratios and large whirling amplitudes. The first is that as the L/D ratio increases, the unrestricted end flow assumption that forms the basis of the short bearing theory introduces increasingly larger errors. The second is that as the whirling amplitude approaches the damper radial clearance, the stiffness and damping coefficients approach infinity much more rapidly than those from a full solution of the governing lubrication equation. The ideal method for determining more exact values is to numerically solve the full lubrication equation, although not everyone has access to such a code. An alternative approach is to use the expressions presented in this paper that are derived from an optimized solution of the short bearing theory that appreciably reduces the errors introduced at high L/D ratios and whirling amplitudes approaching the damper radial clearance. The optimized solution yields a simple closed form correction factor based on Galerkin’s method that minimizes these errors over the positive pressure region of the oil film. This analytic correction factor increases the accuracy of the short bearing theory for all whirling amplitudes and extends the applicability of the closed form solution to larger L/D ratio damper designs. The simple closed form expressions presented herein apply to a damper whirling in a circular centered orbit for both a partial pi-film cavitated model and a full-film uncaviated model. Examples are given that demonstrate the optimized solution yields stiffness and damping values that are significantly closer to the numerical solution for L/D ratio designs up to 1.0 and/or whirling amplitudes approaching the damper radial clearance.


Author(s):  
Michael Branagan ◽  
David Griffin ◽  
Christopher Goyne ◽  
Alexandrina Untaroiu

Compliant gas foil bearings are composed of two layers of thin metallic foil and a thin film of gas to support the journal. The bottom foil creates an elastic structure which supports the top foil. This support structure can take a variety of shapes that range from a series of bumps around the circumference to a series of overlapping leaves. The top foil and the rotation of the rotor create a wedge of air that supports the rotor. The complaint foil structure deforms in response to the pressure developed within the gas film. These bearings have several advantages over conventional fluid film bearings. These advantages include reduced weight due to the elimination of the oil system, stable operation at higher speeds and temperatures, low power loss at high speeds and long life with little maintenance. Some disadvantages of gas foil bearings are low load capacities at low speed and modest stiffness and damping values. Due to these properties, compliant gas foil bearings are commonly used in specialized applications such as compressors for aircraft pressurization, engines for turboshaft propulsion, air cycle machines (ACMs), turboexpanders, and small microturbines. The ability to predict the behavior of these bearings and design them to meet the needs of the application is invaluable to the design process. This behavior can include things such as bearing stiffness, damping, and load capacity. Currently most foil bearing analysis tools involve some sort of coupling between hydrodynamics and structural analyses. These analysis tools can often have convergence issues and can require the use of empirically derived characteristics. This paper reviews the current status of the compliant gas foil bearings research, focusing mainly on the journal bump-type gas foil bearings and the development of the analysis tools for these bearings. This paper contributes to the field by making recommendations of the future developments of the analytical tools of journal bump-type gas foil bearings.


Author(s):  
J. Y. Zhao ◽  
I. W. Linnett ◽  
E. J. Hahn

This paper proposes an improved squeeze film damper which will prevent the bistable operation associated with conventional squeeze film dampers at large unbalances and/or at small bearing parameters. It consists of a conventional squeeze film damper with a flexibly supported outer ring. This secondary flexible support is considered to be massless, and to have a constant stiffness and damping. The effectiveness of this damper in preventing bistable operation is investigated over a wide range of operating conditions for a rigid rotor supported on a centrally preloaded squeeze film damper. It is shown that depending on relevant parameters such as the stiffness ratio between the secondary support and the retaining spring, the damping coefficient of the support, and the mass ratio between the damper outer ring and the rotor, this proposed damper is very effective in preventing bistable operation even for high unbalance conditions.


1980 ◽  
Vol 102 (1) ◽  
pp. 41-47 ◽  
Author(s):  
A. Kent Stiffler

A pressurized oil squeeze film damper supporting a rigid rotor mounted in antifriction bearings is investigated. Orifice and inherent feed inlets are examined, and it is shown that the clearance determines the inlet resistance for a groove or slot. The film stiffness and damping forces are determined as a function of the restrictor coefficient, rotor unbalance speed and the supply pressure using the short bearing approximation. These forces are related to the system transmissibility. A design methodology for low transmissibilities is presented.


Sign in / Sign up

Export Citation Format

Share Document