scholarly journals The Impact of Microearthquakes Induced by Reservoir Water Level Rise on Stability of Rock Slope

2016 ◽  
Vol 2016 ◽  
pp. 1-13 ◽  
Author(s):  
Dongliang Li ◽  
Xinrong Liu ◽  
Xingwang Li ◽  
Yongquan Liu

In order to study the impact of frequent microearthquakes induced by water level rise on the stability of rock bedded slopes in the Three Gorges Reservoir (TGR) area, Zhaoshuling Landslide (a representative slope) is selected to study. Safety factors based on probability statistics andFLAC3Dare used for numerical simulation (under the operating condition that five earthquakes of Intensity IV are applied to slope in succession after water level rises from 145 m to 175 m). Then the slope’s dynamic stability characteristics and failure mechanism are analyzed. The study shows that slope deformation is evidently the result of thrust load. The deformation starts from the steeply dipping segment in the middle part of slip mass and is controlled by the soft interlayer. Shear failure tends to occur along the soft interlayer and the horizontal slip displacement increases from the rear to the front of the slope. The steeply dipping segment shows a general downslide trend. Although the gentle slope platform on the rear edge is relatively stable, it is vulnerable to tensile fractures which are precursors of landslide. Under the same failure probability, as the number of microearthquake occurrences increases, the safety factor of slope under microearthquake action decreases gradually.

Geosciences ◽  
2018 ◽  
Vol 9 (1) ◽  
pp. 17 ◽  
Author(s):  
Ziyang Li ◽  
Wei Ye ◽  
Miroslav Marence ◽  
Jeremy Bricker

Climate change with extreme hydrological conditions, such as drought and flood, bring new challenges to seepage behavior and the stability of earthfill dams. Taking a drought-stricken earthfill dam of China as an example, the influence of drought-flood cycles on dam seepage behavior is analyzed. This paper includes a clay sample laboratory experiment and an unsteady finite element method seepage simulation of the mentioned dam. Results show that severe drought causes cracks on the surface of the clay soil sample. Long-term drought causes deeper cracks and induces a sharp increase of suction pressure, indicating that the cracks would become channels for rain infiltration into the dam during subsequent rainfall, increasing the potential for internal erosion and decreasing dam stability. Measures to prevent infiltration on the dam slope surface are investigated, for the prevention of deep crack formation during long lasting droughts. Unsteady seepage indicators including instantaneous phreatic lines, equipotential lines and pore pressure gradient in the dam, are calculated and analyzed under two assumed conditions with different reservoir water level fluctuations. Results show that when the water level changes rapidly, the phreatic line is curved and constantly changing. As water level rises, equipotential lines shift upstream, and the pore pressure gradient in the dam’s main body is larger than that of steady seepage. Furthermore, the faster the water level rises, the larger the pore pressure gradient is. This may cause internal erosion. Furthermore, the case of a cracked upstream slope is modelled via an equivalent permeability coefficient, which shows that the pore pressure gradient in the zone beneath the cracks increases by 5.9% at the maximum water level; this could exacerbate internal erosion. In addition, results are in agreement with prior literature that rapid drawdown of the reservoir water level is detrimental to the stability of the upstream slope based on embankment slope stability as calculated by the Simplified Bishop Method. It is concluded that fluctuations of reservoir water level should be strictly controlled during drought-flood cycles; both the drawdown rate and the fill rate must be regulated to avoid the internal erosion of earthfill dams.


Water ◽  
2017 ◽  
Vol 9 (7) ◽  
pp. 450 ◽  
Author(s):  
Faming Huang ◽  
Xiaoyan Luo ◽  
Weiping Liu

It is significant to study the variations in the stability coefficients of hydrodynamic pressure landslides with different permeability coefficients affected by reservoir water level fluctuations and rainstorms. The Sifangbei landslide in Three Gorges Reservoir area is used as case study. Its stability coefficients are simulated based on saturated-unsaturated seepage theory and finite element analysis. The operating conditions of stability coefficients calculation are reservoir water level variations between 175 m and 145 m, different rates of reservoir water level fluctuations, and a three-day continuous rainstorm. Results show that the stability coefficient of the hydrodynamic pressure landslide decreases with the drawdown of the reservoir water level, and a rapid drawdown rate leads to a small stability coefficient when the permeability coefficient ranges from 1.16 × 10−6 m/s to 4.64 × 10−5 m/s. Additionally, the landslide stability coefficient increases as the reservoir water level increases, and a rapid increase in the water level leads to a high stability coefficient when the permeability coefficient ranges from 1.16 × 10−6 m/s to 4.64 × 10−5 m/s. The landslide stability coefficient initially decreases and then increases as the reservoir water level declines when the permeability coefficient is greater than 4.64 × 10−5 m/s. Moreover, for structures with the same landslide, the landslide stability coefficient is most sensitive to the change in the rate of reservoir water level drawdown when the permeability coefficient increases from 1.16 × 10−6 m/s to 1.16 × 10−4 m/s. Additionally, the rate of decrease in the stability coefficient increases as the permeability coefficient increases. Finally, the three-day rainstorm leads to a significant reduction in landslide stability, and the rate of decrease in the stability coefficient initially increases and then decreases as the permeability coefficient increases.


Author(s):  

The impact of the reservoir water level alterations rate limitation upon its operational mode has been studied. These limitations impact upon the hydro electric power station performance has been assessed. It has been proposed to take into consideration the level alteration rate in water/economic and water/power production calculations.


2021 ◽  
Author(s):  
Zhiqiang Fan ◽  
Yanhao Zheng

Abstract In the Three Gorges Reservoir (TGR) area, the accumulation landslide characterized by stepped slip surfaces is widely developed, and its stability is significantly affected by the fluctuation of reservoir water level. In this paper, the Shuping landslide, a typical accumulation landslide in the TGR area, was selected to study the effect of water level fluctuations on landslide stability. Based on Multi-Circular (M-C) model, it is found that the decline of reservoir water level was the dominant factor causing the decrease of landslide stability. At the end of the decline of reservoir water level, the landslide stability was minimum and the corresponding moment was the most dangerous. The effect of the drawdown speed of reservoir water level on the minimum value of landslide stability had a threshold effect, although the minimum stability coefficient of landslide decreased with the increase of drawdown speed. Under the most dangerous water level conditions, the stability of the piled landslide increased linearly with the increase of the net thrust of piles. Also, by comparing with other classical models, the effectiveness of the M-C model in evaluating landslide stability under the dynamic changes of reservoir water level was verified. The results could provide a reliable scientific basis for improving the stability analysis and reinforcement measures of the accumulation landslide with the multi-circular slip surfaces in the TGR area, as well as can be applied to similar landslides in reservoir areas.


Author(s):  
Ming-liang Chen ◽  
Xing-guo Yang ◽  
Shun-chao Qi ◽  
Hai-bo Li ◽  
Jia-wen Zhou

Occurrence of a reservoir landslide and its potential secondary hazards near a dam can result in significant losses and casualties, such as those that resulted from the Vajont landslide. In this study, a cataclinal rock slope in the Maoergai reservoir was taken as a case to study the characteristics of the gravitational deformation process and to analyze the potential threat. The stability of rock slope is analyzed by the limit equilibrium method, and the potential landslide movement and subsequent waves are also simulated. Results indicate that lithology, geological structure, reservoir water level changes and artificial activities all play an important role for the large deformation of rock slope deformation, which is characterized by a combination of bending-toppling and principally shear-slip. Pre-calculations of potential threats indicated that the impact of a landslide wave would be greater at dead water levels than at the normal water level and could result in blockage of the inlet to the water diversion structure on the opposite right bank. These findings provide implication for the control of reservoir rock slopes: (i) serious attention should be paid to the influence of water on rock strength in early and (ii) infiltration must be prevented during water level rise.Thematic collection: This article is part of the Role of water in destabilizing slopes collection available at: https://www.lyellcollection.org/cc/Role-of-water-in-destabilizing-slopes


2011 ◽  
Vol 368-373 ◽  
pp. 1482-1486
Author(s):  
Yan Hui Song ◽  
Ying Wang ◽  
Min Qi Huang

Engineering geology characteristics of No. 7 landslide located at Ciha Gorge is described and shear strength of the slip band soils is determined. Based on the above, unbalanced pushing force method is used to calculate the stability factor of the landslide the under different work conditions. It shows that the influence of the reservoir water level rising on the No. 7 landslide mainly includes two points: (1) water makes the shear strength of slip band soils reduced and thus result in the reduction of the stability factor; (2) the rising of reservoir water level also exerts water pressure to the surface of landslide body, and this is beneficial to landslide stability. Calculation results show that with the rising of reservoir water level the stability factor will experience beginning’s reducing followed by later increasing. The minimum stability factor in the process of impounding is 1.05 and it will be 1.08 when reservoir water level reaches to normal impounded level. This shows that No. 7 landslide will maintain elemental stability status in the all process of impounding.


2021 ◽  
Vol 13 (4) ◽  
pp. 786
Author(s):  
Andrea Titolo

Over the last 50 years, countries across North Africa and the Middle East have seen a significant increase in dam construction which, notwithstanding their benefits, have endangered archaeological heritage. Archaeological surveys and salvage excavations have been carried out in threatened areas in the past, but the formation of reservoirs often resulted in the permanent loss of archaeological data. However, in 2018, a sharp fall in the water level of the Mosul Dam reservoir led to the emersion of the archaeological site of Kemune and allowed for its brief and targeted investigation. Reservoir water level change is not unique to the Mosul Dam, but it is a phenomenon affecting most of the artificial lakes of present-day Iraq. However, to know in advance which sites will be exposed due to a decrease in water level can be a challenging task, especially without any previous knowledge, field investigation, or high-resolution satellite image. Nonetheless, by using time-series medium-resolution satellite images, combined to obtain spectral indexes for different years, it is possible to monitor “patterns” of emerging archaeological sites from three major Iraqi reservoirs: Mosul, Haditha and Hamrin lake. The Normalised Difference Water Index (NDWI), generated from annual composites of Landsat and Sentinel-2 images, allow us to distinguish between water bodies and other land surfaces. When coupled with a pixel analysis of each image, the index can provide a mean for highlighting whether an archaeological site is submerged or not. Moreover, using a zonal histogram algorithm in QGIS over polygon shapefiles that represent a site surface, it is possible to assess the area of a site that has been exposed over time. The same analyses were carried out on monthly composites for the year 2018, to assess the impact of monthly variation of the water level on the archaeological sites. The results from both analyses have been visually evaluated using medium-resolution true colour images for specific years and locations and with 3 m resolution Planetscope images for 2018. Understanding emersion “patterns” of known archaeological sites provides a useful tool for targeted rescue excavation, while also expanding the knowledge of the post-flooding impact on cultural heritage in the regions under study.


Geofluids ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
Qingxiang Meng ◽  
Kun Qian ◽  
Lin Zhong ◽  
Jinjian Gu ◽  
Yue Li ◽  
...  

Large-scale slopes at the banks of reservoirs pose a serious threat to the safety of hydropower stations. The fluctuation of the reservoir water level is a key factor in the slope stability. However, the parameters to describe the relationship among water content, matric suction, and soil strength are difficult to measure using unsaturated soil strength theory. To solve this problem, a simple FEM-LEM-combined scheme considering pore pressure, seepage force, and strength weakening is presented to calculate the safety factor. A numerical study on the impact of reservoir water level fluctuations on stability of a glaciofluvial deposit slope is implemented. Two typical profiles are used to estimate the stability of the glaciofluvial deposit slope in response to rising and lowering water levels. The results indicate that this method proposed a simple and efficient tool for water level-induced slope stability analysis.


2012 ◽  
Vol 594-597 ◽  
pp. 407-414
Author(s):  
Wu Yi ◽  
Zhao Ping Meng ◽  
Guo Qing Li ◽  
Zhi Wei Jin

Reservoir water level is one important factor influencing the stability of landslides. The dynamic response of landslide stability under reservoir water level function and its features are analyzed using theoretical and numerical methods. The results show that, in terms of reservoir water level fluctuation and landslide permeability, the seepage filed of landslide can be divided into four types: lag behind impoundment(X-Ⅰ), lag behind drawdown(T-Ⅰ), synchronization with impoundment(X-Ⅱ) and synchronization with drawdown (T-Ⅱ). Under lag behind drawdown, at a certain rate of reservoir drawdown, the stability drops with the permeability of landslide. Under lag behind impoundment, with the rise of water level, the lower the permeability of landslide is, the more stable the landslide is. Under synchronization with impoundment or drawdown, the stability of landslide drops with reservoir impoundment and rises with reservoir drawdown.


Sign in / Sign up

Export Citation Format

Share Document