scholarly journals Quantitative Evaluation and Selection of Reference Genes for Quantitative RT-PCR in Mouse Acute Pancreatitis

2016 ◽  
Vol 2016 ◽  
pp. 1-11 ◽  
Author(s):  
Zhaoping Yan ◽  
Jinhang Gao ◽  
Xiuhe Lv ◽  
Wenjuan Yang ◽  
Shilei Wen ◽  
...  

The analysis of differences in gene expression is dependent on normalization using reference genes. However, the expression of many of these reference genes, as evaluated by quantitative RT-PCR, is upregulated in acute pancreatitis, so they cannot be used as the standard for gene expression in this condition. For this reason, we sought to identify a stable reference gene, or a suitable combination, for expression analysis in acute pancreatitis. The expression stability of 10 reference genes (ACTB, GAPDH, 18sRNA, TUBB, B2M, HPRT1, UBC, YWHAZ, EF-1α, and RPL-13A) was analyzed using geNorm, NormFinder, and BestKeeper software and evaluated according to variations in the raw Ct values. These reference genes were evaluated using a comprehensive method, which ranked the expression stability of these genes as follows (from most stable to least stable): RPL-13A, YWHAZ > HPRT1 > GAPDH > UBC > EF-1α> 18sRNA > B2M > TUBB > ACTB. RPL-13A was the most suitable reference gene, and the combination of RPL-13A and YWHAZ was the most stable group of reference genes in our experiments. The expression levels of ACTB, TUBB, and B2M were found to be significantly upregulated during acute pancreatitis, whereas the expression level of 18sRNA was downregulated. Thus, we recommend the use of RPL-13A or a combination of RPL-13A and YWHAZ for normalization in qRT-PCR analyses of gene expression in mouse models of acute pancreatitis.

2020 ◽  
Author(s):  
Chaofan Jin ◽  
Weihao Song ◽  
Mengya Wang ◽  
Jie Qi ◽  
Quanqi Zhang ◽  
...  

Abstract Background: The quantitative real-time reverse transcription PCR (qRT-PCR) is a widely used technique that relies on the reference gene for gene expression normalization. Selecting a suitable reference gene is a crucial step to obtain an accurate result in qRT-PCR. However, most previous studies of fishes adopted reference genes that were commonly used in mammals without validation. Results: In this study, we utilized 89 transcriptome datasets covering early developmental stages and adult tissues, and carried out transcriptome-wide identification and validation of reference genes in Sebastes schlegelii. Finally, 121 candidate reference genes were identified based on four criteria. Eight candidates (METAP2, BTF3L4, EIF5A1, TCTP, UBC, PAIRB, RAB10, and DLD) and four commonly used reference genes (TUBA, ACTB, GAPDH, RPL17) in mammals were selected for validation via qRT- PCR and four statistical methods (delta-Ct, BestKeeper, geNorm, and NormFinder). The results revealed that the candidate reference genes we recommended are more stable than traditionally used ones. Conclusions: This is the first study to conduct transcriptome-wide identification and validation of reference genes for quantitative RT-PCR in the black rockfish, and lay an important foundation for gene expression analysis in teleost.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Meng Wang ◽  
Tingting Ren ◽  
Prince Marowa ◽  
Haina Du ◽  
Zongchang Xu

AbstractQuantitative real-time polymerase chain reaction (qPCR) using a stable reference gene is widely used for gene expression research. Suaeda glauca L. is a succulent halophyte and medicinal plant that is extensively used for phytoremediation and extraction of medicinal compounds. It thrives under high-salt conditions, which promote the accumulation of high-value secondary metabolites. However, a suitable reference gene has not been identified for gene expression standardization in S. glauca under saline conditions. Here, 10 candidate reference genes, ACT7, ACT11, CCD1, TUA5, UPL1, PP2A, DREB1D, V-H+-ATPase, MPK6, and PHT4;5, were selected from S. glauca transcriptome data. Five statistical algorithms (ΔCq, geNorm, NormFinder, BestKeeper, and RefFinder) were applied to determine the expression stabilities of these genes in 72 samples at different salt concentrations in different tissues. PP2A and TUA5 were the most stable reference genes in different tissues and salt treatments, whereas DREB1D was the least stable. The two reference genes were sufficient to normalize gene expression across all sample sets. The suitability of identified reference genes was validated with MYB and AP2 in germinating seeds of S. glauca exposed to different NaCl concentrations. Our study provides a foundational framework for standardizing qPCR analyses, enabling accurate gene expression profiling in S. glauca.


2021 ◽  
Author(s):  
Virginia Friedrichs ◽  
Anne Balkema-Buschmann ◽  
Anca Dorhoi ◽  
Gang Pei

Abstract Bats are the only mammals capable of powered flight and their body temperature can reach up to 42°C during flight. Additionally, bats display robust type I IFN interferon (IFN-I) responses and some species constitutively express IFN-α. Reference genes with stable expression under temperature oscillations and IFN-I release are therefore critical for normalization of quantitative reverse-transcription polymerase chain reaction (qRT-PCR) data in bats. The expression stability of reference genes in Rousettus aegyptiacus remains elusive, although this species is frequently used in the infection research. We selected ACTB, EEF1A1, GAPDH and PGK1 as candidate reference genes and evaluated their expression stability in various tissues and cells from this model bat species upon IFN-I treatment at 37°C and 40°C by qRT-PCR. We employed two statistical algorithms, BestKeeper and NormFinder, and found that EEF1A1 exhibited the highest stability under all tested conditions. ACTB and GAPDH displayed unstable expression at 40°C and upon IFN-I treatment, respectively. By normalizing to EEF1A1, we uncovered that GAPDH expression was significantly induced by IFN‑I in R. aegyptiacus. Our study identifies EEF1A1 as the most suitable reference gene for qRT-PCR studies and unveils the induction of GAPDH expression by IFN-I in R. aegyptiacus. These findings are pertinent to other bat species and even bear relevance for non-volant mammals that show physiological fluctuations of core body temperature.


2021 ◽  
Author(s):  
Haixia Zhu ◽  
Yongqiang Ma ◽  
Liang Cheng

Abstract In order to construct a RT-qPCR system suitable for response of Avena fatua L. to Trichoderma polysporum , and screen stable internal reference genes, GeNorm, NormFinder, BestKeeper and RefFinde were used to perform SYBR Green-based RT-qPCR analysis on 8 candidate internal reference genes ( 18S , 28S , TUA , UBC , ACT , GAPDH , TBP and EF-1 ) in A. fatua samples after inoculation of T. polysporum Strain HZ-31. The results showed that TBP , 18S and UBC were the most stable internal reference genes, TBP and TUA , TBP and GAPDH , 18S and TBP , UBC and 18S were the most suitable combination of the two internal reference genes, which could be used as the internal reference genes for functional gene expression analysis during the interaction between T. polysporum and A. fatua .


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Min-dong Chen ◽  
Bin Wang ◽  
Yong-ping Li ◽  
Mei-juan Zeng ◽  
Jian-ting Liu ◽  
...  

AbstractSelecting suitable internal reference genes is an important prerequisite for the application of quantitative real-time PCR (qRT-PCR). However, no systematic studies have been conducted on reference genes in luffa. In this study, seven reference genes were selected, and their expression levels in luffa plants exposed to various simulated abiotic stresses [i.e., cold, drought, heat, salt, H2O2, and abscisic acid (ABA) treatments] were analyzed by qRT-PCR. The stability of the reference gene expression levels was validated using the geNorm, NormFinder, BestKeeper, and RefFinder algorithms. The results indicated that EF-1α was the most stably expressed and suitable reference gene overall and for the heat, cold, and ABA treatments. Additionally, UBQ expression was stable following the salt treatment, whereas TUB was identified as a suitable reference gene for H2O2 and drought treatments. The reliability of the selected reference genes was verified by analyzing the expression of copper/zinc superoxide dismutase (Cu/Zn-SOD) gene in luffa. When the most unstable reference genes were used for data normalizations, the resulting expression patterns had obvious biases when compared with the expression patterns for the most ideal reference genes used alone or combined. These results will be conducive to more accurate quantification of gene expression levels in luffa.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Bei-Bei Zhang ◽  
Xu Shen ◽  
Xiu-Jin Li ◽  
Yun-Bo Tian ◽  
Hong-Jia Ouyang ◽  
...  

AbstractIn quantitative PCR research, appropriate reference genes are key to determining accurate mRNA expression levels. In order to screen the reference genes suitable for detecting gene expression in tissues of the reproductive axis, a total of 420 (males and females = 1:5) 3-year-old Magang geese were selected and subjected to light treatment. The hypothalamus, pituitary and testicular tissues were subsequently collected at different stages. Ten genes including HPRT1, GAPDH, ACTB, LDHA, SDHA, B2M, TUBB4, TFRC, RPS2 and RPL4 were selected as candidate reference genes. The expression of these genes in goose reproductive axis tissues was detected by real-time fluorescent quantitative PCR. The ΔCT, geNorm, NormFinder and BestKeeper algorithms were applied to sort gene expression according to stability. The results showed that ACTB and TUBB4 were the most suitable reference genes for the hypothalamic tissue of Magang goose in the three breeding stages; HPRT1 and RPL4 for pituitary tissue; and HPRT1 and LDHA for testicular tissue. For all three reproductive axis tissues, ACTB was the most suitable reference gene, whereas the least stable reference gene was GAPDH. Altogether, these results can provide references for tissue expression studies in geese under light treatment.


2020 ◽  
Author(s):  
mindong chen ◽  
bin wang ◽  
yongping li ◽  
meijuan zeng ◽  
jianting liu ◽  
...  

Abstract Background: Quantitative real-time PCR (qRT-PCR) is one of the preferred methods for analyzing gene expression, and selecting suitable internal reference genes is an important prerequisite for the application of this technology. However, no systematic studies have been conducted on reference genes in luffa, resulting in limited investigations of luffa gene expression. Results: In this study, seven reference genes ( ACT , TUA , TUB , EF-1α , GAPDH , UBQ , and 18S ) were selected, and their expression levels in luffa plants exposed to various simulated abiotic stresses [i.e., cold, drought, heat, salt, H 2 O 2 , and abscisic acid (ABA) treatments] were analyzed by qRT-PCR. The stability of the reference gene expression levels was validated using the geNorm, NormFinder, BestKeeper, and RefFinder algorithms. The results indicated that EF-1α was the most stably expressed and suitable reference gene overall and for the heat, cold, and ABA treatments. Additionally, UBQ expression was stable following the salt treatment, whereas TUB was identified as a suitable reference gene for H 2 O 2 and drought treatments. In contrast, GAPDH was revealed as an unsuitable reference gene overall and for the heat, salt, H 2 O 2 , ABA, and drought treatments. Regarding the cold treatment, TUA was identified as an unsuitable reference gene. The reliability of the selected reference genes was verified by analyzing the expression of copper/zinc superoxide dismutase ( Cu/Zn-SOD ) gene in luffa. When the most unstable reference genes were used for data normalizations, the resulting expression patterns had obvious biases when compared with the expression patterns for the most ideal reference genes used alone or combined. Conclusions: The study data were used to compile a list of suitable reference genes for qRT-PCR analyses of the gene expression in luffa plants exposed to abiotic stresses. This work may provide the basis for future qRT-PCR-based investigations of the transcription of important functional genes in luffa.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Virginia Friedrichs ◽  
Anne Balkema-Buschmann ◽  
Anca Dorhoi ◽  
Gang Pei

AbstractBats are the only mammals capable of powered flight and their body temperature can reach up to 42 °C during flight. Additionally, bats display robust type I IFN interferon (IFN-I) responses and some species constitutively express IFN-α. Reference genes with stable expression under temperature oscillations and IFN-I release are therefore critical for normalization of quantitative reverse-transcription polymerase chain reaction (qRT-PCR) data in bats. The expression stability of reference genes in Rousettus aegyptiacus remains elusive, although this species is frequently used in the infection research. We selected ACTB, EEF1A1, GAPDH and PGK1 as candidate reference genes and evaluated their expression stability in various tissues and cells from this model bat species upon IFN-I treatment at 35 °C, 37 °C and 40 °C by qRT-PCR. We employed two statistical algorithms, BestKeeper and NormFinder, and found that EEF1A1 exhibited the highest expression stability under all tested conditions. ACTB and GAPDH displayed unstable expression upon temperature change and IFN-I treatment, respectively. By normalizing to EEF1A1, we uncovered that GAPDH expression was significantly induced by IFN-I in R. aegyptiacus. Our study identifies EEF1A1 as the most suitable reference gene for qRT-PCR studies upon temperature changes and IFN-I treatment and unveils the induction of GAPDH expression by IFN-I in R. aegyptiacus. These findings are pertinent to other bat species and may be relevant for non-volant mammals that show physiological fluctuations of core body temperature.


2019 ◽  
Vol 54 (6) ◽  
pp. 1800644 ◽  
Author(s):  
Catherine Moermans ◽  
Esteban Deliege ◽  
Dimitri Pirottin ◽  
Christophe Poulet ◽  
Julien Guiot ◽  
...  

Induced sputum is a non-invasive method of collecting cells from airways. Gene expression analysis from sputum cells has been used to understand the underlying mechanisms of airway diseases such as asthma or chronic obstructive pulmonary disease (COPD). Suitable reference genes for normalisation of target mRNA levels between sputum samples have not been defined so far.The current study assessed the expression stability of nine common reference genes in sputum samples from 14 healthy volunteers, 12 asthmatics and 12 COPD patients.Using three different algorithms (geNorm, NormFinder and BestKeeper), we identified HPRT1 and GNB2L1 as the most optimal reference genes to use for normalisation of quantitative reverse transcriptase (RT) PCR data from sputum cells. The higher expression stability of HPRT1 and GNB2L1 were confirmed in a validation set of patients including nine healthy controls, five COPD patients and five asthmatic patients. In this group, the RNA extraction and RT-PCR methods differed, which attested that these genes remained the most reliable whatever the method used to extract the RNA, generate complementary DNA or amplify it.Finally, an example of relative quantification of gene expression linked to eosinophils or neutrophils provided more accurate results after normalisation with the reference genes identified as the most stable compared to the least stable and confirmed our findings.


2020 ◽  
Author(s):  
Huolin Luo ◽  
Wenjing Yu ◽  
Yuan Tao ◽  
Jonathan Hrovat ◽  
Ahui Xue ◽  
...  

Abstract Background: The real-time quantitative reverse transcription PCR (RT-qPCR) is widely used for gene expression analysis, owing to its advantages of high specificity, sensitivity and repeatability. A suitable reference gene is an absolute prerequisite for accurate normalization, nevertheless, the frequently-used reference gene was reported unstable under different experimental conditions and causes failure to correctly analyze the expression of the interested gene. Therefore, it is vital to systematically evaluate the expression stability of these candidate reference genes before performing RT-qPCR. Results: In this study, two computational statistical methods were used, including geNorm and NormFinder, in order to determine the expression stability of 12 frequently-used reference genes in Dianthus caryophyllus across different experimental conditions. The results show that the expression stability of candidate genes varies greatly in different sample pools, which again proves the instability of these common housekeeping gene expressions. In general, the expression of UBQ10 (ubiquitin10), EF1a (elongation factor 1A) and TIP41 (TIP41-like family protein) were relatively stable under different experimental conditions, while the expression stability of 18S (18S Ribosome RNA), TIF5A (translation initiation factor 5A) and PP2A (protein phosphatase 2A) were relatively poor. Conclusion: EF1α, TIP41 and UBQ10 were considered the most appropriate reference genes when all samples were put together, while UBQ10 was most stable in exogenous hormone treatments. TUB and UBQ10 can be used as reliable internal control genes under stress, while CYP and TUA can act as reliable internal controls in different tissues. This is the first systematic study of selection of reference genes in Carnation, and will benefit future expression studies in this crop.


Sign in / Sign up

Export Citation Format

Share Document