scholarly journals Case Study: LCA Methodology Applied to Materials Management in a Brazilian Residential Construction Site

2016 ◽  
Vol 2016 ◽  
pp. 1-9 ◽  
Author(s):  
João de Lassio ◽  
Josué França ◽  
Kárida Espirito Santo ◽  
Assed Haddad

The construction industry is increasingly concerned with improving the social, economic, and environmental indicators of sustainability. More than ever, the growing demand for construction materials reflects increased consumption of raw materials and energy, particularly during the phases of extraction, processing, and transportation of materials. This work aims to help decision-makers and to promote life cycle thinking in the construction industry. For this purpose, the life cycle assessment (LCA) methodology was chosen to analyze the environmental impacts of building materials used in the construction of a residence project in São Gonçalo, Rio de Janeiro, Brazil. The LCA methodology, based on ISO 14040 and ISO 14044 guidelines, is applied with available databases and the SimaPro program. As a result, this work shows that there is a substantial waste of nonrenewable energy, increasing global warming and harm to human health in this type of construction. This study also points out that, for this type of Brazilian construction, ceramic materials account for a high percentage of the mass of a total building and are thus responsible for the majority of environmental impacts.

Author(s):  
Rijk Block ◽  
Barbara Kuit ◽  
Torsten Schröder ◽  
Patrick Teuffel

<p>The structural engineering community has a strong responsibility to contribute to a more efficient use of natural resources. Nowadays the construction industry is by far the most resource intense industry sector, approximately 40-50% of all primary raw materials are used, which raises the question about the architects and engineer’s accountability. In this context and as a result of the Paris Climate agreement the Dutch government defined the program “Nederland Circulair in 2050”, which states the ambition to use 50% less primary materials in 2030 and to have a full circular economy in 2050.</p><p>One possible approach to achieve these ambitious goals is the application of renewable, bio-based materials in the built environment and to replace traditional, typically cement-based, materials. Already in the past natural building materials, such as timber and bamboo have been used widely, but in recent years new materials came up and provide new opportunities to be used in the construction industry. The authors explored various alternatives, such as hemp and flax fibres, mycelium and lignin-based fibres for composite materials, which will be described with various experimental and realised case studies.</p>


2017 ◽  
Vol 1 (1) ◽  
pp. 91-108
Author(s):  
Maurizio Cellura ◽  
Francesco Guarino ◽  
Sonia Longo

The building sector is one of the most relevant in terms of generation of wealth and occupation, but it is also responsible for significant consumption of natural resources and the generation of environmental impacts, mainly greenhouse gas emissions. In order to improve the eco profile of buildings during their life-cycle, the reduction of the use of resources and the minimization of environmental impacts have become, in the last years, some of the main objectives to achieve in the design of sustainable buildings. The application of the life-cycle thinking approach, looking at the whole life cycle of buildings, is of paramount importance for a real decarbonization and reduction of the environmental impacts of the building sector. This paper presents an application of the life-cycle assessment methodology for assessing the energy and environmental life-cycle impacts of a single-family house located in the Mediterranean area in order to identify the building components and life-cycle steps that are responsible of the higher burdens. The assessment showed that the largest impacts are located in the use stage; energy for heating is significant but not dominant, while the contribution of electricity utilized for households and other equipment resulted very relevant. High environmental impacts are also due to manufacture and transport of building materials and components.


2021 ◽  
Vol 36 (2) ◽  
pp. 182-191
Author(s):  
Ljiljana Kljajevic ◽  
Miljana Mirkovic ◽  
Sabina Dolenec ◽  
Katarina Ster ◽  
Mustafa Hadzalic ◽  
...  

The potential re-use of red mud in the building and construction industry has been the subject of research of many scientists. The presented research is a contribution to the potential solution of this environmental issue through the synthesis of potential construction materials based on red mud. A promising way of recycling these secondary raw materials is the synthesis of alkali-activated binders or alkali activated materials. Alkali-activated materials or inorganic binders based on red mud are a new class of materials obtained by activation of inorganic precursors mainly constituted by silica, alumina and low content of calcium oxide. Since red mud contains radioactive elements like 226Ra and 232Th, this may be a problem for its further utilization. The content of naturally occurring radionuclides in manufactured material products with potential application in the building and construction industry is important from the standpoint of radiation protection. Gamma radiation of the primordial radionuclides, 40K and members of the uranium and thorium series, increases the external gamma dose rate. However, more and more precedence is being given to limiting the radiological dose originating from building materials on the population these days. The aim of this research was to investigate the possible influence of alkali activation-polymerization processes on the natural radioactivity of alkali activated materials synthesized by red mud (BOKSIT a. d. Milici, Zvornik, Bosnia and Herzegovina) and their structural properties. This research confirmed that during the polymerization process the natural radioactivity was reduced, and that the process of alkali activation of raw materials has an influence on natural radioactivity of synthesized materials.


2021 ◽  
Vol 25 (3) ◽  
pp. 341-351
Author(s):  
Sindy Sofía Suárez Silgado ◽  
Lucrecia Janneth Calderon Valdiviezo ◽  
Leandro Fernando Mahecha Vanegas

The construction industry consumes more raw materials and energy than any other economic activity and generates the largest fraction of waste, known as construction and demolition waste (CDW). This waste has significant environmental implications, most notably in South American countries such as Colombia, where it is handled inappropriately. This study evaluated the management processes currently used for fractions of construction and demolition waste generated in Ibagué (Colombia). The environmental impacts of the management of 1 kg of CDW were also calculated. Other CDW management alternatives were evaluated. The percentage of the fraction of the waste and the treatment or management processes used were modified to determine its environmental and economic viability. The information was obtained through telephone interviews and visits to recycling plants, construction companies, quarries, government entities, and inert landfills. It was completed with secondary sources and the Ecoinvent v.2.2 databases. Life Cycle Assessment (LCA) methodology and the SimaPro 8 software were used to calculate the environmental impacts. An economic study of each management process and each alternative was also carried out. A comparison of the other options revealed the current choice contributes most to the environmental impacts in all categories. This study indicates that the most beneficial alternative in environmental and economic terms in Ibagué (Colombia) is where 100% of the metals are recovered, 100% of excavated earth is reused, and 100% of the stone waste is recycled (alternative 3). This alternative remained the most favorable when a sensitivity analysis was carried out with different distances (30 km and 50 km).


2020 ◽  
Vol 2020 (08) ◽  
pp. 28-36
Author(s):  
Martina Zbašnik-Senegačnik ◽  
Ljudmila Koprivec

The built environment requires ever-increasing amounts of raw material resources and at the same time bears the responsibility for the resulting waste. Waste is generated throughout the life cycle. In the initial phases it is referred to as industrial waste, while during construction, reconstruction, and demolition it is called construction waste. Construction waste is most voluminous but it also has a great potential in circular economy that aims at the closed loop cycle where already used construction materials and components are recovered as raw materials. Sustainable building principles include four basic strategies, waste avoidance, construction materials and components re-use, continued use, and recycling. The possibility of construction waste treatment and its possible recovery in the building process depends on the type of prevailing materials that are contained in building elements as well as on detachability, separability and inseparability of structural joints and components. The architect plays a responsible role in decreasing the volume of construction waste as the conception of a building represents the key factor in sustainable construction waste management. Planning a construction with a good dismantling potential at the end of the building’s life cycle includes a number of factors such as the choice of building materials with a low environmental impact, the design of detachable composite materials and structures as well as the design of mono material structures. This article focuses on waste resulting from the built environment and discusses architectural concepts with a potential of reducing the volume of construction waste and its potential recovery as a construction resource.


2021 ◽  
Author(s):  
Fouad Taki

he construction industry is the largest contributor to environmental loading, and while development will require more infrastructure to achieve its goals, this will require more construction and hence more pollution. In order to achieve a sustainable development, the construction industry has to reduce its environmental loading and consumption of energy and raw materials. The methodology of Life Cycle Assessment (LCA) can help in quantifying the cradle to grave impact of construction on the environment. This study was performed to develop a model that uses LCA methodology to estimate the environmental impact of concrete bridge decks in North America. The model traces the emissions during the life cycle of a concrete bridge deck, and then calculates the impact of these emissions on the environment. This study was performed to develop a model that uses LCA methodology to estimate the environmental impact of concrete bridge decks in North America. The model traces the emissions during the life cycle of a concrete bridge deck, and then calculates the impact of these emissions on the environment. The model also calculates the energy and raw materials that are consumed during the life cycle of a concrete bridge deck. This model can be used by designers to evaluate alternative bridge deck designs to select the environmentally sound one.


Author(s):  
Roni Rinne ◽  
Hüseyin Emre Ilgın ◽  
Markku Karjalainen

To date, in the literature, there has been no study on the comparison of hybrid (timber and concrete) buildings with counterparts made of timber and concrete as the most common construction materials, in terms of the life cycle assessment (LCA) and the carbon footprint. This paper examines the environmental impacts of a five-story hybrid apartment building compared to timber and reinforced concrete counterparts in whole-building life-cycle assessment using the software tool, One Click LCA, for the estimation of environmental impacts from building materials of assemblies, construction, and building end-of-life treatment of 50 years in Finland. Following EN 15978, stages of product and construction (A1–A5), use (B1–B6), end-of-life (C1–C4), and beyond the building life cycle (D) were assessed. The main findings highlighted are as following: (1) for A1–A3, the timber apartment had the smallest carbon footprint (28% less than the hybrid apartment); (2) in A4, the timber apartment had a much smaller carbon footprint (55% less than the hybrid apartment), and the hybrid apartment had a smaller carbon footprint (19%) than the concrete apartment; (3) for B1–B5, the carbon footprint of the timber apartment was larger (>20%); (4) in C1–C4, the carbon footprint of the concrete apartment had the lowest emissions (35,061 kg CO2-e), and the timber apartment had the highest (44,627 kg CO2-e), but in D, timber became the most advantageous material; (5) the share of life-cycle emissions from building services was very significant. Considering the environmental performance of hybrid construction as well as its other advantages over timber, wood-based hybrid solutions can lead to more rational use of wood, encouraging the development of more efficient buildings. In the long run, this will result in a higher proportion of wood in buildings, which will be beneficial for living conditions, the environment, and the society in general.


2012 ◽  
Vol 7 (1) ◽  
pp. 173-191 ◽  
Author(s):  
Peng Wu ◽  
Yingbin Feng

The construction industry has considerable environmental impacts through the process of manufacturing building materials and building construction. Many environmental labelling programs have been introduced to the construction industry to measure the environmental impacts, including building up the environmental profiles for building materials. Although absolute measurements of the environmental impacts can be obtained by these labelling programs through detailed Life Cycle Assessment (LCA) studies, relative measurements should not be overlooked to indicate the gap between the current and the “leanest” performance. The term “lean” is often used to describe a process with less wastes, materials, human effort, time, etc. The lean concept originates from the Toyota Production System and has been applied in the automobile industry for decades. This paper therefore aims to investigate the applicability of a relative measurement of the environmental impacts for building materials by introducing the concept of “lean score”. The research aim is narrowed down by choosing the carbon labelling program and the precast concrete products as research objectives. The results indicate that a “lean” benchmark can be built to offer relative measurements of carbon emissions for precast concrete products. The lean score obtained from the benchmarking process provides the improving potential that can help the construction industry move towards sustainability. The results are also useful for regulatory bodies to establish national standards to measure the environmental impacts for building materials.


2021 ◽  
Vol 36 (2) ◽  
pp. 182-191
Author(s):  
Ljiljana Kljajevic ◽  
Miljana Mirkovic ◽  
Sabina Dolenec ◽  
Katarina Ster ◽  
Mustafa Hadzalic ◽  
...  

The potential re-use of red mud in the building and construction industry has been the subject of research of many scientists. The presented research is a contribution to the potential solution of this environmental issue through the synthesis of potential construction materials based on red mud. A promising way of recycling these secondary raw materials is the synthesis of alkali-activated binders or alkali activated materials. Alkali-activated materials or inorganic binders based on red mud are a new class of materials obtained by activation of inorganic precursors mainly constituted by silica, alumina and low content of calcium oxide. Since red mud contains radioactive elements like 226Ra and 232Th, this may be a problem for its further utilization. The content of naturally occurring radionuclides in manufactured material products with potential application in the building and construction industry is important from the standpoint of radiation protection. Gamma radiation of the primordial radionuclides, 40K and members of the uranium and thorium series, increases the external gamma dose rate. However, more and more precedence is being given to limiting the radiological dose originating from building materials on the population these days. The aim of this research was to investigate the possible influence of alkali activation-polymerization processes on the natural radioactivity of alkali activated materials synthesized by red mud (BOKSIT a. d. Milici, Zvornik, Bosnia and Herzegovina) and their structural properties. This research confirmed that during the polymerization process the natural radioactivity was reduced, and that the process of alkali activation of raw materials has an influence on natural radioactivity of synthesized materials.


2021 ◽  
Author(s):  
Fouad Taki

he construction industry is the largest contributor to environmental loading, and while development will require more infrastructure to achieve its goals, this will require more construction and hence more pollution. In order to achieve a sustainable development, the construction industry has to reduce its environmental loading and consumption of energy and raw materials. The methodology of Life Cycle Assessment (LCA) can help in quantifying the cradle to grave impact of construction on the environment. This study was performed to develop a model that uses LCA methodology to estimate the environmental impact of concrete bridge decks in North America. The model traces the emissions during the life cycle of a concrete bridge deck, and then calculates the impact of these emissions on the environment. This study was performed to develop a model that uses LCA methodology to estimate the environmental impact of concrete bridge decks in North America. The model traces the emissions during the life cycle of a concrete bridge deck, and then calculates the impact of these emissions on the environment. The model also calculates the energy and raw materials that are consumed during the life cycle of a concrete bridge deck. This model can be used by designers to evaluate alternative bridge deck designs to select the environmentally sound one.


Sign in / Sign up

Export Citation Format

Share Document