scholarly journals Adjusting of Wind Input Source Term in WAVEWATCH III Model for the Middle-Sized Water Body on the Basis of the Field Experiment

2016 ◽  
Vol 2016 ◽  
pp. 1-13 ◽  
Author(s):  
Alexandra Kuznetsova ◽  
Georgy Baydakov ◽  
Vladislav Papko ◽  
Alexander Kandaurov ◽  
Maxim Vdovin ◽  
...  

Adjusting of wind input source term in numerical model WAVEWATCH III for the middle-sized water body is reported. For this purpose, the field experiment on Gorky Reservoir is carried out. Surface waves are measured along with the parameters of the airflow. The measurement of wind speed in close proximity to the water surface is performed. On the basis of the experimental results, the parameterization of the drag coefficient depending on the 10 m wind speed is proposed. This parameterization is used in WAVEWATCH III for the adjusting of the wind input source term within WAM 3 and Tolman and Chalikov parameterizations. The simulation of the surface wind waves within tuned to the conditions of the middle-sized water body WAVEWATCH III is performed using three built-in parameterizations (WAM 3, Tolman and Chalikov, and WAM 4) and adjusted wind input source term parameterizations. Verification of the applicability of the model to the middle-sized reservoir is performed by comparing the simulated data with the results of the field experiment. It is shown that the use of the proposed parameterizationCD(U10)improves the agreement in the significant wave heightHSfrom the field experiment and from the numerical simulation.

2010 ◽  
Vol 40 (4) ◽  
pp. 656-666 ◽  
Author(s):  
K. N. Tsagareli ◽  
A. V. Babanin ◽  
D. J. Walker ◽  
I. R. Young

Abstract This paper is dedicated to the investigation and calibration of the parameterized form for the wind-input source term Sin proposed earlier on the basis of field observations at Lake George, Australia. The main objective of this study was to obtain spectral forms for the wind-input source function Sin, which incorporates the novel observation-based features and at the same time satisfies the important physical constraint that the total integrated wind input must agree with independently observed magnitudes of the wind stress. Within this approach, a new methodology, a dynamic self-adjusting routine, was developed for correction of the wind-input source function Sin. This correction involves a frequency-dependent adjustment to the growth rate γ( f ), based on extrapolations from field data. The model results also show that light winds require higher-rate adjustments of the wind input than strong winds.


2017 ◽  
Vol 24 (4) ◽  
pp. 581-597 ◽  
Author(s):  
Vladimir Zakharov ◽  
Donald Resio ◽  
Andrei Pushkarev

Abstract. The new Zakharov–Resio–Pushkarev (ZRP) wind input source term Zakharov et al.(2012) is examined for its theoretical consistency via numerical simulation of the Hasselmann equation. The results are compared to field experimental data, collected at different sites around the world, and theoretical predictions based on self-similarity analysis. Consistent results are obtained for both limited fetch and duration limited statements.


2016 ◽  
Author(s):  
Vladimir Zakharov ◽  
Donald Resio ◽  
Andrei Pushkarev

Abstract. The new ZRP wind input source term (Zakharov et al., 2012) is checked for its consistency via numerical simulation of Hasselmann equation. The results are compared to field experimental data, collected at different sites around the world, and theoretical predictions of self-similarity analysis. Good agreement is obtained for limited fetch and time domain statements.


2021 ◽  
Author(s):  
Emanuele Silvio Gentile ◽  
Suzanne L. Gray ◽  
Janet F. Barlow ◽  
Huw W. Lewis ◽  
John M. Edwards

<p>Accurate modelling of air-sea surface exchanges is crucial for reliable extreme surface wind forecasts.  While atmosphere-only weather forecast models represent ocean and wave effects through sea-state independent parametrizations, coupled multi-model systems capture sea-state dynamics by integrating feedbacks between atmosphere, ocean and wave model components.</p><p>Here, we present the results of studying the sensitivity of extreme surface wind speeds to air-sea exchanges at kilometre scale using coupled and uncoupled configurations of the Met Office's UK Regional Coupled Environmental Prediction (UKC4) system. The case period includes the passage of extra-tropical cyclones Helen, Ali, and Bronagh, which brought maximum gusts of 36 ms<sup>-1</sup> over the UK.</p><p>Compared to the atmosphere-only results, coupling to ocean decreases the domain-average sea surface temperature by up to 0.5 K. Inclusion of coupling to waves decreases the 98th percentile 10-m wind speed by up to 2 ms<sup>-1</sup> as young, growing wind waves decrease wind speed by increasing the sea aerodynamic roughness. Impacts on gusts are more modest, with local reductions of up to 1ms <sup>-1,</sup> due to enhanced boundary-layer turbulence which partially offsets air-sea momentum transfer.</p><p>Using a new drag parametrization based on the COARE~4.0 scheme, with a cap on the neutral drag coefficient and decrease for wind speeds exceeding 27 ms<sup>-1 </sup>, the atmosphere-only model achieves equivalent impacts on 10-m wind speeds and gusts as from coupling to waves. Overall, the new drag parametrization achieves the same 20% improvement in forecast 10-m wind skill as coupling to waves, with  the  advantage  of saving the computational cost of the ocean and wave models. </p>


2000 ◽  
Author(s):  
Ian R. Young ◽  
Michael L. Banner ◽  
Mark M. Donelan
Keyword(s):  

2014 ◽  
Vol 599-601 ◽  
pp. 1605-1609 ◽  
Author(s):  
Ming Zeng ◽  
Zhan Xie Wu ◽  
Qing Hao Meng ◽  
Jing Hai Li ◽  
Shu Gen Ma

The wind is the main factor to influence the propagation of gas in the atmosphere. Therefore, the wind signal obtained by anemometer will provide us valuable clues for searching gas leakage sources. In this paper, the Recurrence Plot (RP) and Recurrence Quantification Analysis (RQA) are applied to analyze the influence of recurrence characteristics of the wind speed time series under the condition of the same place, the same time period and with the sampling frequency of 1hz, 2hz, 4.2hz, 5hz, 8.3hz, 12.5hz and 16.7hz respectively. Research results show that when the sampling frequency is higher than 5hz, the trends of recurrence nature of different groups are basically unchanged. However, when the sampling frequency is set below 5hz, the original trend of recurrence nature is destroyed, because the recurrence characteristic curves obtained using different sampling frequencies appear cross or overlapping phenomena. The above results indicate that the anemometer will not be able to fully capture the detailed information in wind field when its sampling frequency is lower than 5hz. The recurrence characteristics analysis of the wind speed signals provides an important basis for the optimal selection of anemometer.


Sign in / Sign up

Export Citation Format

Share Document