scholarly journals Nitriding Process Characterization of Cold Worked AISI 304 and 316 Austenitic Stainless Steels

2017 ◽  
Vol 2017 ◽  
pp. 1-7 ◽  
Author(s):  
Waldemar Alfredo Monteiro ◽  
Silvio Andre Lima Pereira ◽  
Jan Vatavuk

The nitriding behavior of austenitic stainless steels (AISI 304 and 316) was studied by different cold work degree (0% (after heat treated), 10%, 20%, 30%, and 40%) before nitride processing. The microstructure, layer thickness, hardness, and chemical microcomposition were evaluated employing optical microscopy, Vickers hardness, and scanning electron microscopy techniques (WDS microanalysis). The initial cold work (previous plastic deformations) in both AISI 304 and 306 austenitic stainless steels does not show special influence in all applied nitriding kinetics (in layer thicknesses). The nitriding processes have formed two layers, one external layer formed by expanded austenite with high nitrogen content, followed by another thinner layer just below formed by expanded austenite with a high presence of carbon (back diffusion). An enhanced diffusion can be observed on AISI 304 steel comparing with AISI 316 steel (a nitrided layer thicker can be noticed in the AISI 304 steel). The mechanical strength of both steels after nitriding processes reveals significant hardness values, almost 1100 HV, on the nitrided layers.

DYNA ◽  
2015 ◽  
Vol 82 (189) ◽  
pp. 22-29
Author(s):  
Jose Luddey Marulanda-Arevalo ◽  
Saul Castañeda-Quintana ◽  
Francisco Javier Perez-Trujillo

2020 ◽  
Vol 27 ◽  
pp. 53-56
Author(s):  
Zdeněk Joska ◽  
Zdeněk Pokorný ◽  
Jaromír Kadlec ◽  
Zbyněk Studený ◽  
Emil Svoboda

Stainless steels, particularly the austenitic stainless grades are widely used in many industries due to good corrosion resistance, but very poor mechanical properties as surface hardness and wear resistance limit its possible use. Plasma nitriding is one of the few ways to increase the surface hardness of these steels, even though this will affect its corrosion resistance. This paper focuses on the description of the mechanical properties of nitrided layers in the two most widespread austenitic stainless steels AISI 304 and AISI 316L. The microstructure and properties of nitrided layers were evaluated by metallography and microhardness measurement. Surface properties of nitrided steels were characterized by Martens hardness. The results show that plasma nitriding created very hard nitrided layers with thickness about 40 μm and microhardness about 1300 HV0.05. Surface hardness measurements have shown that the maximum values for both steels are about 8.5 GPa, but have different behaviour under higher loads, when the AISI 316L nitrided layer began to crack on the surface and sink.


Alloy Digest ◽  
1979 ◽  
Vol 28 (6) ◽  

Abstract CARPENTER STAINLESS 18Cr-2Ni-12Mn is a high-manganese, nitrogen-strengthened austenitic stainless steel with an excellent combination of toughness, ductility, strength, fabricability and corrosion resistance. It provides substantially higher yield and tensile strengths than AISI Type 304 and is comparable to Type 304 in corrosion resistance in many environments. It can be machined, cold worked, and welded using the same equipment and methods used for the conventional AISI 300 series austenitic stainless steels. It is nonmagnetic as annealed and after severe cold work. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties as well as fracture toughness. It also includes information on corrosion resistance as well as forming, heat treating, machining, joining, and surface treatment. Filing Code: SS-366. Producer or source: Carpenter.


1986 ◽  
Vol 8 ◽  
pp. 593-604 ◽  
Author(s):  
Gianni Rondelli ◽  
B. Mazza ◽  
Tommaso Pastore ◽  
Bruno Vicentini

2014 ◽  
Vol 595 ◽  
pp. 103-112 ◽  
Author(s):  
Richard K.C. Nkhoma ◽  
Charles W. Siyasiya ◽  
Waldo E. Stumpf

2003 ◽  
Vol 43 (2) ◽  
pp. 135-143 ◽  
Author(s):  
Angelo Fernando Padilha ◽  
Ronald Lesley Plaut ◽  
Paulo Rangel Rios

2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Sourabh Shukla ◽  
Awanikumar P. Patil ◽  
Ashlesha Kawale ◽  
Anand Babu Kotta ◽  
Inayat Ullah

Purpose Effect of grain size on degree of sensitization (DOS) was been evaluated in Nickel free steel. Manganese and nitrogen contained alloy is a Ni-free austenitic stainless steels (ASS) having type 202 grade. The main purpose of this investigation is to find the effect of recrystallization on the DOS of stainless steel after the thermo-mechanical processing (cold work and thermal aging). Design/methodology/approach In the present investigation, the deformation of 202 grade analyzed using X-ray diffraction (XRD) and microstructural testing. Optical microstructure of Ni-free ASS has been done for cold worked samples with thermally aged at 900°C_6 h. Double loop electrochemical potentiodynamic reactivation test used for findings of degree of sensitization. Findings Ni-free ASS appears to be deformed more rapidly due to its higher stacking fault energy which gave results in rapid transformation from strain induced martensite to austenite in form of recrystallized grains, i.e. it concluded that as cold work percentage increases more rapidly recrystallization occurs. XRD results also indicate that more fraction of martensite formed as percentage of CW increases but as thermal aging reverted those all martensite to austenite. So investigation gives the conclusion which suggests that with high deformation at higher temperature and duration gives very less DOS. Originality/value Various literatures available for 300 series steel related to the effect of cold work on mechanical properties and sensitization mechanism. However, no one has investigated the effect of recrystallization through thermomechanical processing on the sensitization of nickel-free steel.


2011 ◽  
Vol 2011 ◽  
pp. 1-10 ◽  
Author(s):  
K. A. Habib ◽  
M. S. Damra ◽  
J. J. Saura ◽  
I. Cervera ◽  
J. Bellés

The failure of the protective oxide scales of AISI 304 and AISI 316 stainless steels has been studied and compared at 1,000°C in synthetic air. First, the isothermal thermogravimetric curves of both stainless steels were plotted to determine the time needed to reach the breakdown point. The different resistance of each stainless steel was interpreted on the basis of the nature of the crystalline phases formed, the morphology, and the surface structure as well as the cross-section structure of the oxidation products. The weight gain of AISI 304 stainless steel was about 8 times greater than that of AISI 316 stainless steel, and AISI 316 stainless steel reached the breakdown point about 40 times more slowly than AISI 304 stainless steel. In both stainless steels, reaching the breakdown point meant the loss of the protective oxide scale of Cr2O3, but whereas in AISI 304 stainless steel the Cr2O3scale totally disappeared and exclusively Fe2O3was formed, in AISI 316 stainless steel some Cr2O3persisted and Fe3O4was mainly formed, which means that AISI 316 stainless steel is more resistant to oxidation after the breakdown.


Sign in / Sign up

Export Citation Format

Share Document