scholarly journals SACA: Self-Aware Communication Architecture for IoT Using Mobile Fog Servers

2017 ◽  
Vol 2017 ◽  
pp. 1-17 ◽  
Author(s):  
Vishal Sharma ◽  
Jae Deok Lim ◽  
Jeong Nyeo Kim ◽  
Ilsun You

Internet of things (IoT) aims at bringing together large business enterprise solutions and architectures for handling the huge amount of data generated by millions of devices. For this aim, IoT is necessary to connect various devices and provide a common platform for storage and retrieval of information without fail. However, the success of IoT depends on the novelty of network and its capability in sustaining the increasing demand by users. In this paper, a self-aware communication architecture (SACA) is proposed for sustainable networking over IoT devices. The proposed approach employs the concept of mobile fog servers which make relay using the train and unmanned aerial vehicle (UAV) networks. The problem is presented based on Wald’s maximum model, which is resolved by the application of a distributed node management (DNM) system and state dependency formulations. The proposed approach is capable of providing prolonged connectivity by increasing the network reliability and sustainability even in the case of failures. The effectiveness of the proposed approach is demonstrated through numerical and network simulations in terms of significant gains attained with lesser delay and fewer packet losses. The proposed approach is also evaluated against Sybil, wormhole, and DDoS attacks for analyzing its sustainability and probability of connectivity in unfavorable conditions.

Sensors ◽  
2021 ◽  
Vol 21 (8) ◽  
pp. 2681
Author(s):  
Kedir Mamo Besher ◽  
Juan Ivan Nieto-Hipolito ◽  
Raymundo Buenrostro-Mariscal ◽  
Mohammed Zamshed Ali

With constantly increasing demand in connected society Internet of Things (IoT) network is frequently becoming congested. IoT sensor devices lose more power while transmitting data through congested IoT networks. Currently, in most scenarios, the distributed IoT devices in use have no effective spectrum based power management, and have no guarantee of a long term battery life while transmitting data through congested IoT networks. This puts user information at risk, which could lead to loss of important information in communication. In this paper, we studied the extra power consumed due to retransmission of IoT data packet and bad communication channel management in a congested IoT network. We propose a spectrum based power management solution that scans channel conditions when needed and utilizes the lowest congested channel for IoT packet routing. It also effectively measured power consumed in idle, connected, paging and synchronization status of a standard IoT device in a congested IoT network. In our proposed solution, a Freescale Freedom Development Board (FREDEVPLA) is used for managing channel related parameters. While supervising the congestion level and coordinating channel allocation at the FREDEVPLA level, our system configures MAC and Physical layer of IoT devices such that it provides the outstanding power utilization based on the operating network in connected mode compared to the basic IoT standard. A model has been set up and tested using freescale launchpads. Test data show that battery life of IoT devices using proposed spectrum based power management increases by at least 30% more than non-spectrum based power management methods embedded within IoT devices itself. Finally, we compared our results with the basic IoT standard, IEEE802.15.4. Furthermore, the proposed system saves lot of memory for IoT devices, improves overall IoT network performance, and above all, decrease the risk of losing data packets in communication. The detail analysis in this paper also opens up multiple avenues for further research in future use of channel scanning by FREDEVPLA board.


Author(s):  
S. Geetha ◽  
P. Deepalakshmi

Background:: The concern with the IoT node is energy since nodes are depleted as their energy utilization is incrementally reduced with reduction in far off nodes. The nodes will consume energy when it senses the data, followed with the Computation, and further for transmission. Method:: We proposed the phases for Energy-saving at nodes by Enhanced Agglomerative Clustering, Dynamic Selection of Leader, disposal of faraway sensor, and B * tree cloud storage and retrieval. In a typical IoT system, the nodes are deployed in the environment initially. Nodes are clustered using Enhanced Agglomerative Clustering Algorithm. A far node elimination will be implemented for the nodes not in the cluster region. Results:: By eliminating the need for far-off sensors, we can reduce the energy used. This in turn can also improve the lifetime of sensors. When appropriate, sensitive data is moved from IoT devices and stored in the cloud. Conclusion:: This paper also proposes an approach to fetch the data from IoT by using the Query Predicate method. This research work proposes a unique choice of grouping by estimating the parameters as energy, separation, thickness and portability.


2018 ◽  
Vol 64 ◽  
pp. 04007
Author(s):  
Kaiyu Zhang ◽  
Yuyao Feng ◽  
Lijia Ren ◽  
Quanning Yuan

Great significance shall be attached to the research on how to improve reliability of user-end power supply with limited expense by coordinating reliability and economic efficiency of power grid, so that to meet the increasing demand on reliability of electric power, and achieve considerable economic effectiveness. In this paper, process of power distribution network reliability calculation based on minimum-path failure mode and effect analysis mode is expounded, and a demonstration on calculation of power distribution network reliability is provided. Furthermore, cost-benefit analysis, which includes calculations of cost and benefit of reliability, is introduced to reflect reliability efficiency through power interruption cost calculation. At the end of this paper the cost-benefit Analyses is applied on the optimal reconstructed power distribution network.


Author(s):  
K. Dinesh Kumar ◽  
Venkata Rathnam T. ◽  
Venkata Ramana R. ◽  
M. Sudhakara ◽  
Ravi Kumar Poluru

Internet of things (IoT) technology plays a vital role in the current technologies because IoT develops a network by integrating different kinds of objects and sensors to create the communication among objects directly without human interaction. With the presence of internet of things technology in our daily comes smart thinking and various advantages. At the same time, secure systems have been a most important concern for the protection of information systems and networks. However, adopting traditional security management systems in the internet of things leads several issues due to the limited privacy and policies like privacy standards, protocol stacks, and authentication rules. Usually, IoT devices has limited network capacities, storage, and computing processors. So they are having more chances to attacks. Data security, privacy, and reliability are three main challenges in the IoT security domain. To address the solutions for the above issues, IoT technology has to provide advanced privacy and policies in this large incoming data source. Blockchain is one of the trending technologies in the privacy management to provide the security. So this chapter is focused on the blockchain technologies which can be able to solve several IoT security issues. This review mainly focused on the state-of-the-art IoT security issues and vulnerabilities by existing review works in the IoT security domains. The taxonomy is presented about security issues in the view of communication, architecture, and applications. Also presented are the challenges of IoT security management systems. The main aim of this chapter is to describe the importance of blockchain technology in IoT security systems. Finally, it highlights the future directions of blockchain technology roles in IoT systems, which can be helpful for further improvements.


2020 ◽  
Author(s):  
Wentao Li ◽  
Mingxiong Zhao ◽  
Yuhui Wu ◽  
Junjie Yu ◽  
Lingyan Bao ◽  
...  

Abstract Recently, unmanned aerial vehicle (UAV) acts as the aerial mobile edge computing (MEC) node to help the battery-limited Internet of Things (IoT) devices relieve burdens from computation and data collection, and prolong the lifetime of operating. However, IoT devices can ONLY ask UAV for either computing or caching help, and collaborative offloading services of UAV is rarely mentioned in the literature. Moreover, IoT device has multiple mutually independent tasks, which make collaborative offloading policy design even more challenging. Therefore, we investigate a UAV-enabled MEC networks with the consideration of multiple tasks either for computing or caching. Taking the quality of experience (QoE) requirement of time-sensitive tasks into consideration, we aim to minimize the total energy consumption of IoT devices by jointly optimizing trajectory, communication and computing resource allocation at UAV, and task offloading decision at IoT devices. Since this problem has highly non-convex objective function and constraints, we first decompose the original problem into three subproblems named as trajectory optimization ($\mathbf{P_T}$), resource allocation at UAV ($\mathbf{P_R}$) and offloading decisions at IoT devices ($\mathbf{P_O}$), then propose an iterative algorithm based on block coordinate descent method to cope with them in a sequence. Numerical results demonstrate that collaborative offloading can effectively reduce IoT devices’ energy consumption while meeting different kinds of offloading services, and satisfy the QoE requirement of time-sensitive tasks at IoT devices.


2022 ◽  
pp. 153-178
Author(s):  
S. D. Padiya ◽  
V. S. Gulhane

IoT includes many sensors that have to collect the data and send it to the superior nodes; for such interaction between the IoT devices, various wireless technologies are available, like infrared, Li-Fi, WI-Fi, Zigbee, Bluetooth, etc. Among all the available, Bluetooth proved the most promising short-range wireless communication technology due to various factors. To fulfil the increasing demand for wireless connectivity, the Bluetooth SIG must continuously perform up-gradation. Here, analysis of Bluetooth versions are discussed based on the characteristics such as speed, bandwidth, range, power, message capacity, beacon provision, compatibility, reliability, errors detection, correction capability, advertisement packets, duty cycle, slot availability masks, and many more. This analysis concluded that all the versions have their own set of merits and limitations. For the basic IoT applications (limited functionalities), Bluetooth 4.0/4.2 is a good choice, while for the complex IoT applications (advance functionalities), Bluetooth 5/ 5.1/ 5.2 is better.


This paperis based on security measures to be provided to IoT related data, as there is an increasing demand to secure the IoT devices, networks and applications. The network resources are getting affected as the cybercrimes are increasing day-by-day. In this paper, first we highlight upon the key challenges and security issues in IoT architecture and then focus upon the case study of IoT application in healthcare IoMT, In Healthcare, prevention and cure have seen various advancement in technological schema. The Medical equipment when used with the Internet of Things are termed as Internet of Medical things (IOMT). IoMT is transforming healthcare industry by providing large scale connectivity for medical devices, patients, physicians, clinical and nursing staff who use them and facilitate real-time monitoring supportingthe knowledge gathered from the connected things. Security constraints for IoMT take confidentiality, integrity and authentication as prime key aspect. These can be achievedbytheintegration of physical devices like sensors for connectivity and communication in cloud-based facility which in course is delivered by interface. Access Control security is obtained through key generation for data owners and the user of private health records whilethedata confidentiality is obtained by use of Advanced Encryption Standard (AES)as an efficientencryptionalgorithm


Electronics ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 356
Author(s):  
Chunghyun Lee ◽  
Gunhee Jang ◽  
Nhu-Ngoc Dao ◽  
Demeke Shumeye Lakew ◽  
Cheol Lee ◽  
...  

Unmanned aerial vehicle (UAV) communication is regarded as a promising technology for lightweight Internet of Things (IoT) communications in narrowband-IoT (NB-IoT) systems deployed in rugged terrain. In such UAV-assisted NB-IoT systems, the optimal UAV placement and resource allocation play a critical role. Consequently, the joint optimization of the UAV placement and resource allocation is considered in this study to improve the system capacity. Because the considered optimization problem is an NP-hard problem and owing to its non-convex property, it is difficult to optimize both the UAV placement and resource allocation simultaneously. Therefore, a competitive clustering algorithm has been developed by exchanging strategies between the UAV and the adjacent IoT devices to optimize the UAV placement. With multiple iterations, the UAV and the IoT devices within the coverage area of the UAV, converge their clustering strategies, which are suboptimal, to satisfy both sides. The bordering IoT devices of the adjacent clusters are then migrated heuristically toward each other to obtain the optimal system capacity maximization. Finally, the transmission throughput is optimized using the Nash equilibrium. The simulation results demonstrate that the algorithms proposed in this study exhibit rapid convergence, within 10 iterations, even in a large environment. The performance evaluation demonstrates that the proposed scheme improves the system capacity of the existing schemes by approximately 28%.


Sign in / Sign up

Export Citation Format

Share Document