scholarly journals Little Botany: A Mobile Game Utilizing Data Integration to Enhance Plant Science Education

2017 ◽  
Vol 2017 ◽  
pp. 1-14
Author(s):  
Suphanut Jamonnak ◽  
En Cheng

Mobile devices are rapidly becoming the new medium of educational and social life for young people, and hence mobile educational games have become an important mechanism for learning. To help school-aged children learn about the fascinating world of plants, we present a mobile educational game called Little Botany, where players can create their own virtual gardens in any location on earth. One unique feature of Little Botany is that the game is built upon real-world data by leveraging data integration mechanism. The gardens created in Little Botany are augmented with real-world location data and real-time weather data. More specifically, Little Botany is using real-time weather data for the garden location to simulate how the weather affects plants growth. Little Botany players can learn to select what crops to plant, maintain their own garden, watch crops to grow, tend the crops on a daily basis, and harvest them. With this game, users can also learn plant structure and three chemical reactions.

2021 ◽  
Author(s):  
◽  
Timothy Sherry

<p>An online convolutive blind source separation solution has been developed for use in reverberant environments with stationary sources. Results are presented for simulation and real world data. The system achieves a separation SINR of 16.8 dB when operating on a two source mixture, with a total acoustic delay was 270 ms. This is on par with, and in many respects outperforms various published algorithms [1],[2]. A number of instantaneous blind source separation algorithms have been developed, including a block wise and recursive ICA algorithm, and a clustering based algorithm, able to obtain up to 110 dB SIR performance. The system has been realised in both Matlab and C, and is modular, allowing for easy update of the ICA algorithm that is the core of the unmixing process.</p>


2009 ◽  
Vol 103 (1) ◽  
pp. 62-68
Author(s):  
Kathleen Cage Mittag ◽  
Sharon Taylor

Using activities to create and collect data is not a new idea. Teachers have been incorporating real-world data into their classes since at least the advent of the graphing calculator. Plenty of data collection activities and data sets exist, and the graphing calculator has made modeling data much easier. However, the authors were in search of a better physical model for a quadratic. We wanted students to see an actual parabola take shape in real time and then explore its characteristics, but we could not find such a hands-on model.


Author(s):  
Arjan Voogt ◽  
Harish Pillai ◽  
Robert Seah

Due to the resonance behavior of roll motions, roll damping is an important consideration for vessel motions and associated extreme and fatigue loading on the hull, topsides and risers of an FPSO. In many cases radiation damping is limited and passive damping devices such as bilge keels are installed to spur viscous eddies and hence limit the roll motions. This contributes nonlinear damping to an already complex problem. Designers often rely on model tests to assess this damping. Based on test results, empirical and semi-empirical estimation models have been developed for different ship types and are available in current literature, but examples of benchmark validation with real world data are limited. These benchmarks are often hindered by uncertainty in the observed weather conditions, vessel loading conditions and vessel heading with respect to the waves. This paper discusses these challenges and introduces a novel approach used to characterize the actual roll damping for an FPSO under real world conditions. The assumptions, methodology and results will be discussed in this paper. In this study, 5 years of hindcast weather data is examined along with FPSO heading and roll motion measurements. The roll damping characteristics of this FPSO was expected to change over the course of the measurements and the study documents the actual variation of roll damping under various conditions over this period.


2020 ◽  
Vol 7 (Supplement_1) ◽  
pp. S358-S358
Author(s):  
David L Bostick ◽  
Kalvin Yu ◽  
Cynthia Yamaga ◽  
Ann Liu-Ferrara ◽  
Didier Morel ◽  
...  

Abstract Background Large scale research on antimicrobial usage in real-world populations traditionally does not consist of infusion data. With automation, detailed infusion events are captured in device systems, providing opportunities to harness them for patient safety studies. However, due to the unstructured nature of infusion data, the scale-up of data ingestion, cleansing, and processing is challenging. Figure 1. Illustration of dosing complexity Methods We applied algorithmic techniques to quantitate and visualize vancomycin administration data captured in real-time by automated infusion devices from 3 acute care hospitals. The device data included timestamped infusion events – infusion started, paused, restarted, alarmed, and stopped. We used time density-based segmentation algorithms to depict infusion sessions as bursts of event activity. We examined clinical interpretability of the cluster-defined sessions in defining infusion events, dosing intensity, and duration. Results The algorithms identified 13,339 vancomycin infusion sessions from 2,417 unique patients (mean = 5.5 sessions per patient). Clustering captured vancomycin infusion sessions consistently with correct event labels in &gt;98% of cases. It disentangled ambiguity associated with unexpected events (e.g. multiple stopped/started events within a single infusion session). Segmentation of vancomycin infusion events on an example patient timeline is illustrated in Figure 1. The median duration of infusion sessions was 1.55 (1st, 3rd quartiles: 1.14, 2.02) hours, demonstrating clinical plausibility. Conclusion Passively captured vancomycin administration data from automated infusion device systems provide ramifications for real-time bed-side patient care practice. With large volume of data, temporal event segmentation can be an efficient approach to generate clinically interpretable insights. This method scales up accuracy and consistency in handling longitudinal dosing data. It can enable real-time population surveillance and patient-specific clinical decision support for large patient populations. Better understanding of infusion data may also have implications for vancomycin pharmacokinetic dosing. Disclosures David L. Bostick, PhD, Becton, Dickinson and Co. (Employee) Kalvin Yu, MD, Becton, Dickinson and Company (Employee)GlaxoSmithKline plc. (Other Financial or Material Support, Funding) Cynthia Yamaga, PharmD, BD (Employee) Ann Liu-Ferrara, PhD, Becton, Dickinson and Co. (Employee) Didier Morel, PhD, Becton, Dickinson and Co. (Employee) Ying P. Tabak, PhD, Becton, Dickinson and Co. (Employee)


2019 ◽  
Vol 68 (1) ◽  
pp. 19-28
Author(s):  
Chuanzhao Tian ◽  
Guoqing Li

Electronics ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 342
Author(s):  
Fabio Martinelli ◽  
Fiammetta Marulli ◽  
Francesco Mercaldo ◽  
Antonella Santone

The proliferation of info-entertainment systems in nowadays vehicles has provided a really cheap and easy-to-deploy platform with the ability to gather information about the vehicle under analysis. With the purpose to provide an architecture to increase safety and security in automotive context, in this paper we propose a fully connected neural network architecture considering position-based features aimed to detect in real-time: (i) the driver, (ii) the driving style and (iii) the path. The experimental analysis performed on real-world data shows that the proposed method obtains encouraging results.


Sign in / Sign up

Export Citation Format

Share Document