scholarly journals Using Factorial Design Methodology to Assess PLA-g-Ma and Henequen Microfibrillated Cellulose Content on the Mechanical Properties of Poly(lactic acid) Composites

2017 ◽  
Vol 2017 ◽  
pp. 1-14 ◽  
Author(s):  
M. Dzul-Cervantes ◽  
P. J. Herrera-Franco ◽  
T. Tábi ◽  
A. Valadez-Gonzalez

In this work, a 22 factorial design was used to study the effect of microfibrillated henequen cellulose fibers (HENCEL) and PLA-g-MA coupling agent contents on the tensile, flexural, and impact mechanical properties and the heat deflection temperature (HDT) of biodegradable PLA composites. The results show that the principal effects of HENCEL and MA are statistically significant for the tensile, flexural, HDT, and impact strength properties of PLA composites. Regarding the interactions between the principle effects, MA-HENCEL, there are differences with respect to the mechanical property; for example, for tensile and flexural mechanical properties, there is a synergistic effect between MA and HENCEL, whereas for HDT and impact strength there is not any. The micromechanical analysis shows an excellent agreement between the measured and the estimated values for both the composite tensile strength and the elastic modulus and only slight deviations were noticed for high microfibrillated cellulose fibers content. The morphological analysis via SEM indicated that the addition of PLA-g-MA improved the fiber-matrix adhesion because of the HENCEL unbounding and pull-out decreases from the PLA matrix. The use of appropriate values of matrix strength and stiffness and considering the improved fiber-matrix adhesion of the coupling agent yield a good agreement between experimental and estimated values.


Author(s):  
K.L. More ◽  
R.A. Lowden

The mechanical properties of fiber-reinforced composites are directly related to the nature of the fiber-matrix bond. Fracture toughness is improved when debonding, crack deflection, and fiber pull-out occur which in turn depend on a weak interfacial bond. The interfacial characteristics of fiber-reinforced ceramics can be altered by applying thin coatings to the fibers prior to composite fabrication. In a previous study, Lowden and co-workers coated Nicalon fibers (Nippon Carbon Company) with silicon and carbon prior to chemical vapor infiltration with SiC and determined the influence of interfacial frictional stress on fracture phenomena. They found that the silicon-coated Nicalon fiber-reinforced SiC had low flexure strengths and brittle fracture whereas the composites containing carbon coated fibers exhibited improved strength and fracture toughness. In this study, coatings of boron or BN were applied to Nicalon fibers via chemical vapor deposition (CVD) and the fibers were subsequently incorporated in a SiC matrix. The fiber-matrix interfaces were characterized using transmission and scanning electron microscopy (TEM and SEM). Mechanical properties were determined and compared to those obtained for uncoated Nicalon fiber-reinforced SiC.



2021 ◽  
Vol 32 ◽  
pp. 85-97
Author(s):  
Gunturu Bujjibabu ◽  
Vemulapalli Chittaranjan Das ◽  
Malkapuram Ramakrishna ◽  
Konduru Nagarjuna

Banana/Coir fiber reinforced polypropylene hybrid composites was formulated by using twin screw extruder and injection molding machine. Specimens were prepared untreated and treated B/C Hybrid composites with 4% and 8% of MA-g-PP to increase its compatibility with the polypropylene matrix. Both the without MA-g-PP and with MA-g-PP B/C hybrid composites was utilized and three levels of B/C fiber loadings 15/5, 10/10 and 5/15 % were used during manufacturing of B/C reinforced polypropylene hybrid composites. In this work mechanical performance (tensile, flexural and impact strengths) of untreated and treated (coupling agent) with 4% and 8% of MA-g-PP B/C fibers reinforced polypropylene hybrid composite have been investigated. Treated with MA-g-PP B/C fibers reinforced specimens explored better mechanical properties compared to untreated B/C fibers reinforced polypropylene hybrid composites. Mechanical tests represents that tensile, flexural and impact strength increases with increase in concentration of coupling agent compared to without coupling agent MA-g-PP hybrid composites . B/C fibers reinforced polymer composites exhibited higher tensile, flexural and impact strength at 5% of Banana fiber, 15% of fiber Coir in the presence of 8% of MA-g-PP compared to 4% of MA-g-PP and untreated hybrid composites. The percentage of water absorption in the B/C fibers reinforced polypropylene hybrid composites resisted due to the presence of coupling agent MA-g-PP and thermogravimetry analysis (TGA) also has done.



2017 ◽  
Vol 757 ◽  
pp. 62-67 ◽  
Author(s):  
Kritsanachai Leelachai ◽  
Supissara Ruksanak ◽  
Tarakol Hongkeab ◽  
Supakeat Kambutong ◽  
Raymond A. Pearson ◽  
...  

In this study, diglycidyl ether of bisphenol A (DGEBA) cured cycloaliphatic polyamine was modified with functionalized celluloses for improved thermal and mechanical properties. Three different types of surface-modified cellulose, polyacrylamide-g-cellulose (PGC), aminopropoxysilane-g-cellulose (SGC), and carboxymethyl cellulose (CMC), were investigated and used as reinforcing agents in epoxy resins. The storage modulus of these modified epoxy systems was found to significantly increase with addition of cellulose fillers (up to 1 wt. % cellulose content). An improved fracture toughness (KIC) was also observed with increasing cellulose loading content with PGC and SGC. Among the surface-modified celluloses, epoxy modified with SGC was found to have the highest fracture toughness followed by PGC and CMC at 1.0 wt.% cellulose addition due to the chemical surface compatibility. The toughening mechanisms of the cellulose/epoxy composites, measured by scanning electron microscopy (SEM), revealed that fiber-debonding, fiber-bridging, and fiber-pull out were responsible for increased toughness.



2020 ◽  
Vol 29 (4) ◽  
pp. 377-387
Author(s):  
Satoshi Kobayashi ◽  
Jiaxian Gan ◽  
Toshiko Osada ◽  
Masato Sakaguchi


2018 ◽  
Vol 201 ◽  
pp. 791-815 ◽  
Author(s):  
Fatiha Teklal ◽  
Arezki Djebbar ◽  
Samir Allaoui ◽  
Gilles Hivet ◽  
Yoann Joliff ◽  
...  


2019 ◽  
Vol 29 (4) ◽  
pp. 345-358 ◽  
Author(s):  
Javier I. Cauich-Cupul ◽  
Pedro J. Herrera-Franco ◽  
Edgar García-Hernández ◽  
Veronica Moreno-Chulim ◽  
Alex Valadez-González


2015 ◽  
Vol 30 (9) ◽  
pp. 1242-1254 ◽  
Author(s):  
Matheus Poletto ◽  
Ademir J Zattera

The mechanical and dynamic mechanical properties of cellulose fibers-reinforced polystyrene composites were investigated as a function of cellulose fiber content and coupling agent effect. The composites were prepared using a corotating twin-screw extruder and after injection molding. Three levels of filler loading (10, 20, and 30 wt%) and a fixed amount of coupling agent (2 wt%) were used. The results showed that a cellulose fiber loading of more than 20 wt% caused decrease in the mechanical properties. The addition of coupling agent substantially improves the mechanical and dynamic mechanical properties. The use of coupling agent improved the storage modulus and reduced the damping peak values of the composites due to the improved interfacial adhesion. The height of the damping peak was found to be dependent on the content of cellulose fiber and the interfacial adhesion between fiber and matrix. The adhesion factor values confirm that the better adhesion occurs when coupling agent is used.



Sign in / Sign up

Export Citation Format

Share Document