scholarly journals A Novel Pan-FlavivirusDetection and Identification Assay Based on RT-qPCR and Microarray

2017 ◽  
Vol 2017 ◽  
pp. 1-12 ◽  
Author(s):  
Ariel Vina-Rodriguez ◽  
Konrad Sachse ◽  
Ute Ziegler ◽  
Serafeim C. Chaintoutis ◽  
Markus Keller ◽  
...  

The genusFlavivirusincludes arthropod-borne viruses responsible for a large number of infections in humans and economically important animals. While RT-PCR protocols for specific detection of mostFlavivirusspecies are available, there has been also a demand for a broad-rangeFlavivirusassay covering all members of the genus. It is particularly challenging to balance specificity at genus level with equal sensitivity towards each target species. In the present study, a novel assay combining a SYBR Green-based RT-qPCR with a low-density DNA microarray has been developed. Validation experiments confirmed that the RT-qPCR exhibited roughly equal sensitivity of detection and quantification for all flaviviruses tested. These PCR products are subjected to hybridization on a microarray carrying 84 different oligonucleotide probes that represent all knownFlavivirusspecies. This assay has been used as a screening and confirmation tool forFlaviviruspresence in laboratory and field samples, and it performed successfully in international External Quality Assessment of NAT studies. Twenty-sixFlavivirusstrains were tested with the assay, showing equivalent or superior characteristics compared with the original or even with species-specific RT-PCRs. As an example, test results on West Nile virus detection in a panel of 340 mosquito pool samples from Greece are presented.

Viruses ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1358
Author(s):  
Brigitte Sigrist ◽  
Jessica Geers ◽  
Sarah Albini ◽  
Dennis Rubbenstroth ◽  
Nina Wolfrum

Avian bornaviruses were first described in 2008 as the causative agents of proventricular dilatation disease (PDD) in parrots and their relatives (Psittaciformes). To date, 15 genetically highly diverse avian bornaviruses covering at least five viral species have been discovered in different bird orders. Currently, the primary diagnostic tool is the detection of viral RNA by conventional or real-time RT-PCR (rRT-PCR). One of the drawbacks of this is the usage of either specific assays, allowing the detection of one particular virus, or of assays with a broad detection spectrum, which, however, do not allow for the simultaneous specification of the detected virus. To facilitate the simultaneous detection and specification of avian bornaviruses, a multiplex real-time RT-PCR assay was developed. Whole-genome sequences of various bornaviruses were aligned. Primers were designed to recognize conserved regions within the overlapping X/P gene and probes were selected to detect virus species-specific regions within the target region. The optimization of the assay resulted in the sensitive and specific detection of bornaviruses of Psittaciformes, Passeriformes, and aquatic birds. Finally, the new rRT-PCR was successfully employed to detect avian bornaviruses in field samples from various avian species. This assay will serve as powerful tool in epidemiological studies and will improve avian bornavirus detection.


2007 ◽  
Vol 70 (12) ◽  
pp. 2900-2905 ◽  
Author(s):  
JOHANNA MURPHY ◽  
JENNIFER ARMOUR ◽  
BURTON W. BLAIS

A cloth-based hybridization array system (CHAS) previously developed for the detection of animal species for which prohibited materials have been specified (cattle, sheep, goat, elk, and deer) has been expanded to include the detection of animal species for which there are no prohibitions (pig and horse) in Canadian and American animal feeds. Animal species were identified by amplification of mitochondrial DNA sequences by PCR and subsequent hybridization of the amplicons with an array of species-specific oligonucleotide capture probes immobilized on a polyester cloth support, followed by an immunoenzymatic assay of the bound PCR products. The CHAS permitted sensitive and specific detection of meat meals from different animal species blended in a grain-based feed and should provide a useful adjunct to microscopic examination for the identification of prohibited materials in animal feeds.


BMC Medicine ◽  
2020 ◽  
Vol 18 (1) ◽  
Author(s):  
Sue Mallett ◽  
A. Joy Allen ◽  
Sara Graziadio ◽  
Stuart A. Taylor ◽  
Naomi S. Sakai ◽  
...  

Abstract Background Tests for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) viral ribonucleic acid (RNA) using reverse transcription polymerase chain reaction (RT-PCR) are pivotal to detecting current coronavirus disease (COVID-19) and duration of detectable virus indicating potential for infectivity. Methods We conducted an individual participant data (IPD) systematic review of longitudinal studies of RT-PCR test results in symptomatic SARS-CoV-2. We searched PubMed, LitCOVID, medRxiv, and COVID-19 Living Evidence databases. We assessed risk of bias using a QUADAS-2 adaptation. Outcomes were the percentage of positive test results by time and the duration of detectable virus, by anatomical sampling sites. Results Of 5078 studies screened, we included 32 studies with 1023 SARS-CoV-2 infected participants and 1619 test results, from − 6 to 66 days post-symptom onset and hospitalisation. The highest percentage virus detection was from nasopharyngeal sampling between 0 and 4 days post-symptom onset at 89% (95% confidence interval (CI) 83 to 93) dropping to 54% (95% CI 47 to 61) after 10 to 14 days. On average, duration of detectable virus was longer with lower respiratory tract (LRT) sampling than upper respiratory tract (URT). Duration of faecal and respiratory tract virus detection varied greatly within individual participants. In some participants, virus was still detectable at 46 days post-symptom onset. Conclusions RT-PCR misses detection of people with SARS-CoV-2 infection; early sampling minimises false negative diagnoses. Beyond 10 days post-symptom onset, lower RT or faecal testing may be preferred sampling sites. The included studies are open to substantial risk of bias, so the positivity rates are probably overestimated.


Plant Disease ◽  
2007 ◽  
Vol 91 (1) ◽  
pp. 110-110 ◽  
Author(s):  
B. S. M. Lebas ◽  
F. M. Ochoa-Corona ◽  
D. R. Elliott ◽  
J. Z. Tang ◽  
B. J. R. Alexander

Euphorbia pulcherrima (poinsettias) are commonly infected with Poinsettia mosaic virus (PnMV), which resembles the Tymovirus genus in its morphology and viral properties (2) but is closer to the Marafivirus genus at the sequence level (1). Symptoms induced by PnMV range from leaf mottling and bract distortion to symptomless (2). The presence of PnMV in plants imported into New Zealand had never been proven. Leaves of 10 E. pulcherrima samples and six samples from other Euphorbia spp. (E. atropurpurea, E. lambii, E. leuconeura, E. mellifera, E. milii, and E. piscatorial) were collected in the Auckland area, North Island in 2002. Isometric particles of 26 to 30 nm in diameter were observed with electron microscopy in 3 of 10 E. pulcherrima samples. These three samples produced systemic chlorosis and crinkling symptoms on mechanically inoculated Nicotiana benthamiana, which tested PnMV positive by double-antibody sandwich (DAS)-ELISA (Agdia, Elkart, IN). No particles or symptoms on N. benthamiana were observed with the other Euphorbia spp., which were also PnMV-negative by DAS-ELISA. A reverse transcription-polymerase chain reaction (RT-PCR) was developed to further characterize PnMV. Specific primers were designed from the PnMV complete genome sequence (Genbank Accession No. AJ271595) using the Primer3 web-based software (4). Primer PnMV-F1 (5′-CCTGTATTGTCTCTTGCCGTCC-3′) and primer PnMV-R1 (5′-AGAGGAAAGGAAAAGGTGGAGG-3′) amplified a 764-bp product from nt 5291 of the 5′-end RNA polymerase gene to nt 6082 of the 3′-untranslated region (UTR). Total RNA was extracted from leaf samples using the Qiagen Plant RNeasy Kit (Qiagen Inc., Chastworth, CA). RT was carried out by using PnMV-R1 primer and MMLV reverse transcriptase (Promega, Madison, WI). The PCR was performed in a 20-μl volume reaction containing 2 μl cDNA, 1× Taq reaction buffer, 1.5 mM MgCl2, 0.2 mM dNTPs, 0.2 μM PnMV-F1 primer, and 1 U of Taq polymerase (Promega) with a denaturation step (94°C for 5 min), 30 amplification cycles (94°C for 30 s; 55°C for 30 s; 72°C for 1 min), and a final elongation (72°C for 5 min). The sequence of the RT-PCR product (Genbank Accession No. DQ462438) had 98.7% amino acid identity to PnMV. PCR products were obtained from two of three PnMV ELISA-positive E. pulcherrima and three of three PnMV ELISA-positive symptomatic N. benthamiana. The failure to amplify the fragment from all ELISA-positive PnMV is likely because of the presence of inhibitors and latex in E. pulcherrima (3) that make the RNA extraction difficult. Thus, while RT-PCR may be useful for further characterizing PnMV isolate sequences, ELISA may be more reliable for virus detection. In conclusion, to our knowledge, this is the first report of PnMV in E. pulcherrima but not in other Euphorbia spp. in New Zealand. E. pulcherrima plants have been imported into New Zealand for nearly 40 years, and the virus is probably widespread throughout the country via retail nursery trading. References: (1) B. G. Bradel et al. Virology 271:289, 2000. (2) R. W. Fulton and J. L. Fulton. Phytopathology 70:321, 1980. (3) D.-E. Lesemann et al. Phytopathol. Z. 107:250, 1983. (4) S. Rozen and S. Skaletsky. Page 365 in: Bioinformatics Methods and Protocols: Methods in Molecular Biology. S. Krawetz and S. Misener, eds. Humana Press, Totowa, NJ, 2000.


1997 ◽  
Vol 35 (11-12) ◽  
pp. 455-459 ◽  
Author(s):  
Ph. Vilaginès ◽  
A. Suarez ◽  
B. Sarrette ◽  
R. Vilaginès

A double reconcentration procedure was developed for virus detection in tapwater concentrates obtained by conventional adsorption-elution techniques suitable for cell inoculation as well as for genomic amplification. Using 7.5% PEG 6000 and 2.5% NaCl, a 15min contact time under agitation at room temperature followed by centrifugation (first step: 3,500xg, 90min, 4°C; second step 10,000xg, 20min, 4°C) were the conditions to obtain overall average virus recovery efficiencies of 71% for poliovirus from 900ml eluates and 88, 83 and 75% for poliovirus, coxsackie B2 and rotavirus respectively (400ml eluates). Direct extraction of viral RNA from the first PEG pellet with TrizolTM was efficient for RT-PCR assays without any further treatment. Primer pairs were selected to amplify rotavirus group A and poliovirus in seeded tapwater concentrated by adsorption elution through glass wool. A positive signal was obtained for theoretic virus concentration of 1 PFU. Analysis of field samples (1001) by cell culture and genomic amplification resulted in a higher sensitivity with the latter.


Plants ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 1256
Author(s):  
Dan Mark Alon ◽  
Hagit Hak ◽  
Menachem Bornstein ◽  
Gur Pines ◽  
Ziv Spiegelman

CRISPR/Cas12a-based detection is a novel approach for the efficient, sequence-specific identification of viruses. Here we adopt the use of CRISPR/Cas12a to identify the tomato brown rugose fruit virus (ToBRFV), a new and emerging tobamovirus which is causing substantial damage to the global tomato industry. Specific CRISPR RNAs (crRNAs) were designed to detect either ToBRFV or the closely related tomato mosaic virus (ToMV). This technology enabled the differential detection of ToBRFV and ToMV. Sensitivity assays revealed that viruses can be detected from 15–30 ng of RT-PCR product, and that specific detection could be achieved from a mix of ToMV and ToBRFV. In addition, we show that this method can enable the identification of ToBRFV in samples collected from commercial greenhouses. These results demonstrate a new method for species-specific detection of tobamoviruses. A future combination of this approach with isothermal amplification could provide a platform for efficient and user-friendly ways to distinguish between closely related strains and resistance-breaking pathogens.


2020 ◽  
Author(s):  
Sue Mallett ◽  
Joy Allen ◽  
Sara Graziadio ◽  
Stuart A Taylor ◽  
Naomi S Sakai ◽  
...  

Background Tests for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) viral ribonucleic acid (RNA), using reverse transcription polymerase chain reaction (RT-PCR) are pivotal to detecting current coronavirus disease (COVID-19) and duration of detectable virus indicating potential for infectivity. Methods We conducted an individual participant data (IPD) systematic review of longitudinal studies of RT-PCR test results in symptomatic SARS-CoV-2. We searched PubMed, LitCOVID, medRxiv and COVID-19 Living Evidence databases. We assessed risk of bias using a QUADAS-2 adaptation. Outcomes were the percentage of positive test results by time and the duration of detectable virus, by anatomical sampling sites. Findings Of 5078 studies screened, we included 32 studies with 1023 SARS-CoV-2 infected participants and 1619 test results, from -6 to 66 days post-symptom onset and hospitalisation. The highest percentage virus detection was from nasopharyngeal sampling between 0 to 4 days post-symptom onset at 89% (95% confidence interval (CI) 83 to 93) dropping to 54% (95% CI 47 to 61) after 10 to 14 days. On average, duration of detectable virus was longer with lower respiratory tract (LRT) sampling than upper respiratory tract (URT). Duration of faecal and respiratory tract virus detection varied greatly within individual participants. In some participants, virus was still detectable at 46 days post-symptom onset. Interpretation RT-PCR misses detection of people with SARS-CoV-2 infection; early sampling minimises false negative diagnoses. Beyond ten days post-symptom onset, lower RT or faecal testing may be preferred sampling sites. The included studies are open to substantial risk of bias so the positivity rates are probably overestimated.


Plant Disease ◽  
2018 ◽  
Vol 102 (11) ◽  
pp. 2324-2329 ◽  
Author(s):  
Cheng-Ping Kuan ◽  
Wen-Shi Chang ◽  
Tso-Chi Yang

In this study, we describe multiplex polymerase chain reaction (PCR) coupled with the LiquiChip assay for the identification of Zucchini yellow mosaic virus, Cucumber green mottle mosaic virus, and Cucumber mosaic virus by coamplification with plant mRNA as an internal control. Multiplex reverse-transcription (RT)-PCR products were subjected to allele-specific primer extension, then hybridized to carboxylated microspheres with unique fluorescent identifiers followed by detection using the LiquiChip 200 workstation. This assay is highly specific for distinguishing individual viruses from a mixed viral population and is 10 times more sensitive than multiplex RT-PCR. In addition, the establishment of this method enabled the detection of cucurbit viruses in field samples.


2012 ◽  
Vol 21 (3) ◽  
pp. 304-307 ◽  
Author(s):  
Osvaldo José da Silveira Neto ◽  
Sabrina Castilho Duarte ◽  
Hérika Xavier da Costa ◽  
Guido Fontgalland Coelho Linhares

The objective of this study was to design and evaluate new primers for species-specific detection of L. infantum chagasi using PCR. Two combinations of primer pairs were established with the aim of obtaining specific amplification products from the L. infantum chagasi 18S rRNA gene. The combinations of the primer pairs and the respective sizes of the PCR products, based on the U422465 GenBank reference sequence of L. infantum chagasi, were: LCS1/LCS3 (259 bp) and LCS2/LCS3 (820 bp). It was concluded that the new PCR assays optimized using the primer pairs LCS1/LCS3 and LCS2/LCS3 were effective for specific detection of L. infantum chagasi, with analytical sensitivity to detect 1 pg/µL of DNA.


Sign in / Sign up

Export Citation Format

Share Document