scholarly journals Wnt5a Signaling in Normal and Cancer Stem Cells

2017 ◽  
Vol 2017 ◽  
pp. 1-6 ◽  
Author(s):  
Yan Zhou ◽  
Thomas J. Kipps ◽  
Suping Zhang

Wnt5a is involved in activating several noncanonical Wnt signaling pathways, which can inhibit or activate canonical Wnt/β-catenin signaling pathway in a receptor context-dependent manner. Wnt5a signaling is critical for regulating normal developmental processes, including stem cell self-renewal, proliferation, differentiation, migration, adhesion, and polarity. Moreover, the aberrant activation or inhibition of Wnt5a signaling is emerging as an important event in cancer progression, exerting both oncogenic and tumor suppressive effects. Recent studies show the involvement of Wnt5a signaling in regulating normal and cancer stem cell self-renewal, cancer cell proliferation, migration, and invasion. In this article, we review recent findings regarding the molecular mechanisms and roles of Wnt5a signaling in stem cells in embryogenesis and in the normal or neoplastic breast or ovary, highlighting that Wnt5a may have different effects on target cells depending on the surface receptors expressed by the target cell.

Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 463-463 ◽  
Author(s):  
Ulrich Steidl ◽  
Frank Rosenbauer ◽  
Roel G.W Verhaak ◽  
Xuesong Gu ◽  
Hasan H. Otu ◽  
...  

Abstract Knockdown of the expression of the myeloid master regulator PU.1 leads to the development of an immature acute myeloid leukemia (AML) in mice. Recent reports suggest that functional inactivation of PU.1 might also play a role in human AML. However, the molecular mechanisms underlying PU.1-mediated malignant transformation are unknown. We examined leukemic PU.1 knockdown mice and found a 3-fold expansion of lin-, c-kit+, Sca1+ (KLS) hematopoietic stem cells (HSC) as compared to wildtype controls, which was not observed during the preleukemic phase. When we transplanted double-sorted leukemic KLS-HSC into NOD-SCID mice the recipients developed AML after 9–12 weeks indicating that the leukemic stem cells derive from the HSC compartment. This finding prompted us to examine the transcriptome of PU.1 knockdown preleukemic HSC to identify early transcriptional changes underlying their malignant transformation. After lineage-depletion and FACS sorting of preleukemic KLS-HSC we performed linear amplification of RNA by 2 cycles of RT-IVT and hybridized the cRNA with Affymetrix Mouse Genome 430 2.0 arrays. Principal component analysis as well as hierarchical cluster analysis clearly distinguished PU.1 knockdown and wildtype HSC. Several in-vitro targets of PU.1 such as c-Fes, BTK, TFEC, CSF2R, and Ebi3 were downregulated demonstrating that those are also affected in HSC in vivo. Differential expression of 16 genes was corroborated by qRT-PCR. Strikingly, several Jun family transcription factors including c-Jun and JunB were downregulated. Retroviral restoration of c-Jun expression in bone marrow cells of preleukemic mice rescued the PU.1-initiated myelomonocytic differentiation block in this early phase. To target cells in the leukemic stage we applied lentiviral vectors expressing c-Jun or JunB. While c-Jun did not affect leukemic proliferation, lentiviral restoration of JunB led to an 80% reduction of clonogenic growth and a loss of leukemic self-renewal capacity in serial replating assays. Expression analysis of 285 patients with AML confirmed the correlation between PU.1 and JunB downregulation and suggests its relevance in human disease. These results delineate a transcriptional pattern that precedes leukemic transformation in PU.1 knockdown HSC and demonstrate that downregulation of c-Jun and JunB contribute to the development of PU.1-induced AML by blocking differentiation (c-Jun) and increasing self-renewal (JunB). Therefore, examination of disturbed gene expression in preleukemic HSC can identify genes whose dysregulation is essential for leukemic stem cell function and are potential targets for therapeutic interventions.


2021 ◽  
Vol 23 (Supplement_6) ◽  
pp. vi23-vi24
Author(s):  
Kelly Mitchell ◽  
Joseph Alvarado ◽  
Christopher Goins ◽  
Steven Martinez ◽  
Jonathan Macdonald ◽  
...  

Abstract Glioblastoma (GBM) progression and resistance to conventional therapies is driven in part by cells within the tumor with stem cell properties including quiescence, self-renewal and drug efflux potential. It is thought that eliminating these cancer stem cells (CSCs) is a key component to successful clinical management of GBM. However, currently, few known molecular mechanisms driving CSCs can be exploited for therapeutic development. Core transcription factors such as SOX2, OLIG2, OCT4 and NANOG maintain the CSC state in GBM. Our laboratory recently uncovered a self-renewal signaling axis involving RBBP5 that is necessary and sufficient for CSC maintenance through driving expression of these core stem cell maintenance transcription factors. RBBP5 is a component of the WRAD complex, which promotes Lys4 methylation of histone H3 to positively regulate transcription. We hypothesized that targeting RBBP5 could be a means to disrupt epigenetic programs that maintain CSCs in stemness transcriptional states. We found that genetic and pharmacologic inhibition of the WRAD complex reduced CSC growth, self-renewal and tumor initiation potential. WRAD inhibitors partially dissembled the WRAD complex and reduced H3K4 trimethylation both globally and at the promoters of key stem cell maintenance transcription factors. Using a CSC reporter system, we demonstrated that WRAD complex inhibition decreased growth of SOX2/OCT4 expressing CSCs in a concentration-dependent manner as quantified by live imaging. Overall, our studies assess the function of the WRAD complex and the effect of WRAD complex inhibitors in preclinical models and specifically on the stem cell state for the first time in GBM. Studying the functions of the WRAD complex in CSCs may improve understanding of GBM pathogenesis and elucidate how CSCs survive despite aggressive chemotherapy and radiation. Our ongoing studies aim to develop brain penetrant inhibitors targeting the WRAD complex as an anti-CSC strategy that could potentially synergize with standard of care treatments.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Xiaoqing Fan ◽  
Haoran Yang ◽  
Chenggang Zhao ◽  
Lizhu Hu ◽  
Delong Wang ◽  
...  

Abstract Background A large number of preclinical studies have shown that local anesthetics have a direct inhibitory effect on tumor biological activities, including cell survival, proliferation, migration, and invasion. There are few studies on the role of local anesthetics in cancer stem cells. This study aimed to determine the possible role of local anesthetics in glioblastoma stem cell (GSC) self-renewal and the underlying molecular mechanisms. Methods The effects of local anesthetics in GSCs were investigated through in vitro and in vivo assays (i.e., Cell Counting Kit 8, spheroidal formation assay, double immunofluorescence, western blot, and xenograft model). The acyl-biotin exchange method (ABE) assay was identified proteins that are S-acylated by zinc finger Asp-His-His-Cys-type palmitoyltransferase 15 (ZDHHC15). Western blot, co-immunoprecipitation, and liquid chromatograph mass spectrometer-mass spectrometry assays were used to explore the mechanisms of ZDHHC15 in effects of local anesthetics in GSCs. Results In this study, we identified a novel mechanism through which local anesthetics can damage the malignant phenotype of glioma. We found that local anesthetics prilocaine, lidocaine, procaine, and ropivacaine can impair the survival and self-renewal of GSCs, especially the classic glioblastoma subtype. These findings suggest that local anesthetics may weaken ZDHHC15 transcripts and decrease GP130 palmitoylation levels and membrane localization, thus inhibiting the activation of IL-6/STAT3 signaling. Conclusions In conclusion, our work emphasizes that ZDHHC15 is a candidate therapeutic target, and local anesthetics are potential therapeutic options for glioblastoma.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 265-265
Author(s):  
Keisuke Ito ◽  
Atsushi Hirao ◽  
Fumio Arai ◽  
Sahoko Matsuoka ◽  
Keiyo Takubo ◽  
...  

Abstract Haematopoietic stem cells (HSCs) undergo self-renewing cell divisions and maintain blood production for their lifetime. Appropriate control of HSC self-renewal is critical for maintenance of haematopoietic homeostasis. Here we show that activation of p38 MAPK limits lifespan of HSCs in response to increasing levels of reactive oxygen species (ROS) in vivo. Although normal quiescent HSCs maintain a low level of oxidative stress, an increase in ROS was observed in HSCs after transplantation as well as in aged mice. In vitro treatment with BSO (Buthionine sulfoximine), which depletes intra-cellular glutathion, increased ROS (H2O2) level in immature hematopoietic cell population, c-kit+Sca1+Lin- (KSL) cells, in a dose-dependent manner. Low dose concentration of BSO suppressed reconstitution capacity of HSCs, whereas higher concentration did not affect progenitors. These data indicate that HSCs are much more sensitive to increased ROS than progenitors and are consistent with our previous results from Atm−/− mice in which ROS level is elevated in vivo. Here we focused on MAPKs for the stem cell dysfunction since it has been shown that several MAPKs are activated in response to ROS. We evaluated effects of MAPK inhibitors for p38, JNK or ERK in incubation of KSL cell with BSO. p38 inhibitor (SB203580), neither JNK nor ERK inhibitor, restored reconstitution capacity of HSCs after transplantation, suggesting that activation of p38 may contributes to defect of stem cell function in vivo. To address the question, we evaluated p38 activation in Atm−/− BM cells by immunohistochemistry. Surprisingly, p38 protein was phosphorylated only in KSL cells, but not other more differentiated cell populations, despite that the ROS levels were comparable among the cell population of mice. In response to activation of p38, p16INK4a was up-regulated only in KSL cells. The data indicates a possibility that stem cell-specific p38 activation negatively regulates self-renewal of HSCs. We then investigated a role of p38 activation on self-renewal of HSCs in vivo. When p38 inhibitor was intraperitoneally administered both before and after BMT, the level of repopulation achieved was comparable to that of the wild-type. Furthermore, Atm−/− mice that received long-term p38 inhibitor treatment did not show either anemia, a decrease in progenitor colony-forming capacity, or reduced frequencies of stem cell subsets. These data demonstrate that the activation of p38 present in HSCs promotes the exhaustion of stem cell pool in response to elevation of ROS. It has been proposed that aging is driven in part by a gradual depletion of stem cell functional capacity. There are evidences that inappropriate production of oxidants is connected to aging and life span. We propose a possibility that p38 activation in response to ROS plays a critical role for limit of stem cell capacity.


2011 ◽  
Vol 2011 ◽  
pp. 1-6 ◽  
Author(s):  
Guoqiang Sun ◽  
Chelsea Fu ◽  
Caroline Shen ◽  
Yanhong Shi

Stem cells have provided great hope for the treatment of a variety of human diseases. However, the molecular mechanisms underlying stem cell pluripotency, self-renewal, and differentiation remain to be unveiled. Epigenetic regulators, including histone deacetylases (HDACs), have been shown to coordinate with cell-intrinsic transcription factors and various signaling pathways to regulate stem cell pluripotency, self-renewal, and fate determination. This paper focuses on the role of HDACs in the proliferation and neuronal differentiation of neural stem cells and the application of HDAC inhibitors in reprogramming somatic cells to induced pluripotent stem cells (iPSCs). It promises to be an active area of future research.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Zhiping Fu ◽  
Xing Liang ◽  
Ligang Shi ◽  
Liang Tang ◽  
Danlei Chen ◽  
...  

AbstractPancreatic cancer is a highly lethal malignancy due to failures of early detection and high metastasis in patients. While certain genetic mutations in tumors are associated with severity, the molecular mechanisms responsible for cancer progression are still poorly understood. Synaptotagmin-8 (SYT8) is a membrane protein that regulates hormone secretion and neurotransmission, and its expression is positively regulated by the promoter of the insulin gene in pancreatic islet cells. In this study, we identified a previously unknown role of SYT8 in altering tumor characteristics in pancreatic cancer. SYT8 levels were upregulated in patient tumors and contributed towards increased cell proliferation, migration, and invasion in vitro and in vivo. Increased SYT8 expression also promoted tumor metastasis in an in vivo tumor metastasis model. Furthermore, we showed that SYT8-mediated increase in tumorigenicity was regulated by SIRT1, a protein deacetylase previously known to alter cell metabolism in pancreatic lesions. SIRT1 expression was altered by orphan nuclear receptor ERRα and troponin-1 (TNNI2), resulting in cell proliferation and migration in an SYT8-dependent manner. Together, we identified SYT8 to be a central regulator of tumor progression involving signaling via the SIRT1, ERRα, and TNNI2 axis. This knowledge may provide the basis for the development of therapeutic strategies to restrict tumor metastasis in pancreatic cancer.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 449-449
Author(s):  
Jennifer Lynch ◽  
Clemence Virely ◽  
Priscilla Lau ◽  
Huacheng Luo ◽  
Suming Huang ◽  
...  

Self-renewal is a fundamental property essential for both normal and malignant hematopoietic stem cells (HSCs). While we and others have previously shown that activation of Hoxa9 or β-catenin enhances HSC self-renewal, its inactivation has modest impacts on adult HSCs and their malignant counterparts (Cobas et al., 2004; Lawrence et al., 2005; Siriboonpiputtana et al., 2017; Smith et al., 2011; So et al., 2004; Zhao et al., 2007), suggesting the presence of complementary pathways capable of mediating self-renewal in the absence of either protein. However, simultaneous inactivation of other key Hox genes involved in hematopoietic self-renewal including Hoxb3/b4 did not yield additional hematopoietic phenotypes in the Hoxa9 knockout (KO) background (Magnusson et al., 2007). Similarly, suppression of γ-catenin in β-catenin KO mice did not result in additional hematopoietic defects, and exhibited largely normal hematopoietic functions (Koch et al., 2008). Therefore, the alternative pathways that support hematopoietic self-renewal upon inactivation of Hoxa9 or β-catenin remain largely unknown. Our recent studies examining the regulation of posterior Hoxa loci reveals a key function of long non-coding RNA, HOTTIP in protecting Hoxa9 gene expression and uncovers a co-regulation of canonical Wnt signalling pathways by HOTTIP in HSCs, providing a molecular link between these two previously unrelated pathways. This finding is also consistent with our recent report demonstrating their functional complementation in AML stem cells, where suppression of Hoxa9 sensitizes HSC-derived AML stem cells to β-catenin inhibition and ablates their transformation ability, suggesting a novel crosstalk between β-catenin and Hoxa9in mediating hematopoietic self-renewal. To this end, the current study developed and characterized a novel β-cateninfl/fl Hoxa9-/-Rosa-CreER mouse model. In contrast to single Hoxa9 or β-catenin inactivation where a mild hematopoietic phenotype has been reported in adult HSCs, we found that double inactivation of Hoxa9 and β-catenin resulted in severe hematopoietic defects. In vitroclonogenic assays revealed that bone marrow cells harbouring combined inactivation of Hoxa9/β-catenin generated markedly reduced myeloid colony numbers (>9-fold reduction compared to either single KO alone) of which mature CFU-G (50%) and CFU-E (50%) were the predominant composition. Colonies generated from isolated LSK (Lin-c-kit+Sca1+) populations were equivalent in quantity but devoid of multipotential progenitors (CFU-GEMM) in contrast to the diverse colony composition of control and single KO cells. Transplantation of β-cateninfl/flHoxa9-/-bone marrow to lethally irradiated recipient mice followed by β-catenin inactivation (4 days tamoxifen treatment) resulted in defects in all HSC and progenitor compartments compared to single KO alone at all time points measured (3wk, 6wk and 12 wk post tamoxifen treatment). Immunophenotypic analysis revealed that the defect originated as early as the LT-HSC stage with a drastic 7-fold reduction in LT-HSCs (Lin-c-kit+Sca1+CD150+CD48-) and 3-fold reduction in ST-HSCs (Lin-c-kit+Sca1+CD150-CD48-). Consistent with a stem cell defect, we also observed significant reductions in downstream myeloid progenitor populations including common myeloid progenitor (CMP) (2-fold), granulocyte-monocyte progenitor (GMP) (2-fold) and megakaryocyte and erythrocyte progenitors (MEP) (7-fold). Mechanistically, Hoxa9 and β-catenin co-regulate expression of Prmt1, a key epigenetic regulator with multifaceted functions in mediating RNA splicing and DNA damage response in hematopoietic cells. To further investigate the role of Prmt1 in hematopoietic development, we generated a novel Prmt1 KO model where Prmt1 can be conditionally inactivated in HSCs. Deletion of Prmt1 alone phenocopied simultaneous inactivation of β-catenin and Hoxa9, resulting in severe reductions in LT-HSC (3.5-fold), ST-HSC (4-fold) and downstream hematopoietic progenitor populations (CMP 4.5-fold, GMP 3.5-fold and MEP 4-fold). Together these data suggest that the posterior Hoxa loci and canonical Wnt pathways are developmentally regulated in a complementary manner as a safeguard mechanism to allow efficient hematopoietic self-renewal, which is largely dependent on intact Prmt1 functions. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 3780-3780
Author(s):  
Catriona Jamieson ◽  
Qingfei Jiang ◽  
Frida Holm ◽  
Jane Isquith ◽  
Adam Mark ◽  
...  

Innate immune anti-viral adenosine to inosine (A-to-I) base editing enzymes (editases) promote hematopoietic stem cell (HSC) self-renewal and protect the human genome from retroviral integration in response to inflammatory cytokine signaling. However, hyper-editing has been linked to therapeutic resistance and cancer progression. Because myeloproliferative neoplasm (MPN) progression is typified by increased JAK2/STAT-mediated cytokine signaling, we investigated the cell type and context specific role of adenosine deaminase acting on RNA1 (ADAR1) editaseactivity in MPN pre-leukemia stem cell (pre-LSC) evolution into acute myeloid leukemia stem cells (LSCs). Here we show by whole transcriptome sequencing (RNA-seq) of 113 FACS-purified hematopoietic stem cells and progenitors from 78 individuals, including 54 MPN and AML patients and 24healthy young and aged individuals, that anti-viral signaling pathway activation and splice isoform switching from ADAR1p110 to JAK2/STAT-inducible ADAR1p150 RNA editase activation contributes to MPN progression. Pre-LSC evolution to LSC was characterized by ADAR1p150 upregulation, distinctive RNA editome patterns, STAT3 hyper-editing, increased replating as a measure of self-renewal. Moreover, LSC generation was typified by beta-catenin self-renewal pathway upregulation, which was recapitulated by lentiviral ADAR1p150 overexpression and reversed by lentiviral ADAR1p150 shRNA knockdown. Our studyunderscores the importance of inflammatory-cytokine fueled enzymatic mutagenesis in human MPN pre-LSC evolution to LSC. Thus, this study sets the stage for developing predictive RNA editome biomarkers of LSC generation to guidetherapeutic strategies aimed at preventing progression of hematopoietic malignancies. Disclosures Crews: Ionis Pharmaceuticals: Research Funding.


2020 ◽  
Author(s):  
Xiaoqing Fan ◽  
Haoran Yang ◽  
Chenggang Zhao ◽  
Lizhu Hu ◽  
Delong Wang ◽  
...  

Abstract BackgroundA large number of preclinical studies have shown that local anesthetics have a direct inhibitory effect on biological activities, including cell survival, proliferation, migration, and invasion. There are few studies on the role of local anesthetics in cancer stem cells. This study aimed to determine the possible role of local anesthetics in glioblastoma stem cell (GSC) self-renewal and the underlying molecular mechanisms.MethodsThe effects of local anesthetics in GSCs were investigated through in vitro and in vivo assays (i.e., cell counting kit 8, spheroidal formation assay, double immunofluorescence, western blot, and xenograft model). The Acyl biotin exchange method (ABE) assay was identified proteins that are S-acylated by zinc finger Asp-His-His-Cys-type palmitoyltransferase 15 (ZDHHC15). Western blot, co-immunoprecipitation, and liquid chromatograph mass spectrometer-mass spectrometry assays were used to explore the mechanisms of ZDHHC15 in effects of local anesthetics in GSCs.ResultsIn this study, we identified a novel mechanism through which local anesthetics can damage the malignant phenotype of glioma. We found that local anesthetics prilocaine, lidocaine, procaine, and ropivacaine can impair the survival and self-renewal of GSCs, especially the classic glioblastoma subtype. These findings suggest that local anesthetics may weaken ZDHHC15 transcripts and decrease GP130 palmitoylation levels and membrane localization, thus inhibiting the activation of IL-6/STAT3 signaling. ConclusionsIn conclusion, our work emphasizes that ZDHHC15 is a candidate therapeutic target, and local anesthetics are potential therapeutic options for glioblastoma.


2013 ◽  
Vol 2013 ◽  
pp. 1-18 ◽  
Author(s):  
Shin Fujimaki ◽  
Masanao Machida ◽  
Ryo Hidaka ◽  
Makoto Asashima ◽  
Tohru Takemasa ◽  
...  

Adult stem cells play an essential role in mammalian organ maintenance and repair throughout adulthood since they ensure that organs retain their ability to regenerate. The choice of cell fate by adult stem cells for cellular proliferation, self-renewal, and differentiation into multiple lineages is critically important for the homeostasis and biological function of individual organs. Responses of stem cells to stress, injury, or environmental change are precisely regulated by intercellular and intracellular signaling networks, and these molecular events cooperatively define the ability of stem cell throughout life. Skeletal muscle tissue represents an abundant, accessible, and replenishable source of adult stem cells. Skeletal muscle contains myogenic satellite cells and muscle-derived stem cells that retain multipotent differentiation abilities. These stem cell populations have the capacity for long-term proliferation and high self-renewal. The molecular mechanisms associated with deficits in skeletal muscle and stem cell function have been extensively studied. Muscle-derived stem cells are an obvious, readily available cell resource that offers promise for cell-based therapy and various applications in the field of tissue engineering. This review describes the strategies commonly used to identify and functionally characterize adult stem cells, focusing especially on satellite cells, and discusses their potential applications.


Sign in / Sign up

Export Citation Format

Share Document