scholarly journals Susceptibility of In Vitro Melanoma Skin Cancer to Photoactivated Hypericin versus Aluminium(III) Phthalocyanine Chloride Tetrasulphonate

2017 ◽  
Vol 2017 ◽  
pp. 1-10 ◽  
Author(s):  
I. M. Ndhundhuma ◽  
H. Abrahamse

The sensitivity of human melanoma cells to photoactivated Hypericin (Hyp) compared to aluminium(III) phthalocyanine chloride tetrasulphonate (AlPcS4Cl) is reported in this study. Melanoma cells (A375 cell line) were treated with various concentrations of Hyp or AlPcS4Cl alone, for 1, 4, and 24 hrs; varying doses of laser irradiation alone (594 or 682 nm); or optimal concentrations of PSs combined with laser irradiation. Changes in cell morphology, viability, membrane integrity, and proliferation after treatment of cells were determined using inverted microscopy, Trypan blue cell exclusion, Lactate Dehydrogenase (LDH) membrane integrity, and adenosine triphosphate (ATP) cell proliferation assay, respectively. More than 60% of cell survival was observed when cells were treated with 2.5 μM of Hyp or AlPcS4Cl alone at all incubation times or with 5 J/cm2 of 594 or 682 nm laser alone. Combination of PSs and respective lasers leads to a statistically significant incubation time-dependent decrease in survival of cells. Flow cytometry using the FITC Annexin V/PI apoptosis kit demonstrated that cell death induced after Hyp-PDT is via early and late apoptosis whereas early apoptosis was the main mechanism observed with AlPcS4Cl-PDT. Hyp-PDT compared to AlPcS4Cl-PDT is indicated to be a more effective cancer cell death inducer in melanoma cells.

2016 ◽  
Vol 2016 ◽  
pp. 1-8 ◽  
Author(s):  
P. A. S. R. Santos ◽  
G. B. Avanço ◽  
S. B. Nerilo ◽  
R. I. A. Marcelino ◽  
V. Janeiro ◽  
...  

The objective of this study was to evaluate the cytotoxic activity of rosemary (REO,Rosmarinus officinalisL.), turmeric (CEO,Curcuma longaL.), and ginger (GEO,Zingiber officinaleR.) essential oils in HeLa cells. Cytotoxicity tests were performedin vitro, using tetrazolium (MTT) and neutral red assays for evaluation of antiproliferative activity by different mechanisms, trypan blue assay to assess cell viability and evaluation of cell morphology for Giemsa to observe the cell damage, and Annexin V to evaluate cell death by apoptosis. CEO and GEO exhibited potent cytotoxic activity against HeLa cells. IC50obtained was 36.6 μg/mL for CEO and 129.9 μg/mL for GEO. The morphology of HeLa cells showed condensation of chromatin, loss of cell membrane integrity with protrusions (blebs), and cell content leakage for cells treated with CEO and GEO, from the lowest concentrations studied, 32.81 μg/mL of CEO and 32.12 μg/mL of GEO. The Annexin V assay revealed a profile of cell death by apoptosis for both CEO and GEO. The results indicate cytotoxic activityin vitrofor CEO and GEO, suggesting potential use as anticancer agents for cervical cancer cells.


Author(s):  
I.V. Leshkova ◽  
◽  
O.V. Dolgih ◽  
O.YU. Ustinova

Abstract. Introduction. The protection of the reproductive health of the working-age population is the most important direction of State policy. In 5-15% of cases, the causes of reproductive dysfunction are immunological disorders. Benzene belongs to the group of industrial reprotoxicants, however, its effect of benzene on the reproductive system has not been sufficiently studied. Objective: to study the immunological aspects of the effect of benzene on the reproductive system. Methods. We examined 50 men exposed to benzene with reproductive disorders (26-49 years old), as well as 4 workers with normal sexual function aged 53-60 years. Spontaneous and induced changes in the cellular expression of apoptosis markers were studied. For the study, the ANNEXIN V-FITC/7-AAD kit was used for the detection of cells that have undergone apoptosis. The experiment was conducted in vitro using a biological medium (ejaculate). A factor of the chemical nature was benzene. Results. According to the results of the comparative analysis, there were no significant deviations of pathogenetic tests of immunological markers in comparison with the reference level in the spontaneous expression samples, but there was an excess of expression of the CD95 + cell death receptor (p<0.05) in 30% of the samples examined, and a decrease in the number of Annexin V-FITC+7AAD negative cells (without reaching the significance level) in samples with a load of (15%). There was a difference in the expression levels of CD95+ and CD25+ CD-reception indicators by 20% and 10% in relation to the spontaneous level (p<0.05). Representatives of the chemical group of aromatic hydrocarbons realize reprotoxicity, using the mechanism of excessive induction of the membrane signaling of the cell death receptor, accelerate the natural program of cell death by approximately 20% compared to the state of reproductive cells that were not stimulated. Conclusion. At the present stage, one of the tasks of occupational medicine is to study the effect of chemicals on the processes of reproduction, to develop new approaches to assessing the risk of their impact on the reproductive health of workers.


2003 ◽  
Vol 285 (5) ◽  
pp. H2218-H2224 ◽  
Author(s):  
R. Nijmeijer ◽  
M. Willemsen ◽  
C. J. L. M. Meijer ◽  
C. A. Visser ◽  
R. H. Verheijen ◽  
...  

Type II secretory phospholipase A2 (sPLA2) is a cardiovascular risk factor. We recently found depositions of sPLA2 in the necrotic center of infarcted human myocardium and normally appearing cardiomyocytes adjacent to the border zone. The consequences of binding of sPLA2 to ischemic cardiomyocytes are not known. To explore a potential effect of sPLA2 on ischemic cardiomyocytes at a cellular level we used an in vitro model. The cardiomyocyte cell line H9c2 or adult cardiomyocytes were isolated from rabbits that were incubated with sPLA2 in the presence of metabolic inhibitors to mimic ischemia-reperfusion conditions. Cell viability was established with the use of annexin V and propidium iodide or 7-aminoactinomycin D. Metabolic inhibition induced an increase of the number of flip-flopped cells, including a population that did not stain with propidium iodide and that was caspase-3 negative. sPLA2 bound to the flip-flopped cells, including those negative for caspase-3. sPLA2 binding induced cell death in these latter cells. In addition, sPLA2 potentiated the binding of C-reactive protein (CRP) to these cells. We conclude that by binding to flip-flopped cardiomyocytes, including those that are caspase-3 negative and presumably reversibly injured, sPLA2 may induce cell death and tag these cells with CRP.


2021 ◽  
Author(s):  
Aya Shanti ◽  
Kenana Al Adem ◽  
Cesare Stefanini ◽  
Sungmun Lee

Abstract Phosphate ions are the most abundant anions inside the cells, and they are increasingly gaining attention as key modulators of cellular function and gene expression. However, little is known about the effect of inorganic phosphate ions on cancer cells, particularly breast cancer cells. Here, we investigated the toxicity of different phosphate compounds to triple-negative human breast cancer cells (MDA-MB-231) and compared it to that of human monocytes (THP-1). We found that, unlike dihydrogen phosphate (H2PO4−), hydrogen phosphate (HPO42−) at 20 mM or lower concentrations induced breast cancer (MDA-MB-231) cell death more than immune (THP-1) cell death. We correlate this effect to the fact that phosphate in the form of HPO42− raises pH levels to alkaline levels which are not optimum for transport of phosphate into cancer cells. The results in this study highlight the importance of further exploring hydrogen phosphate (HPO42−) as a potential therapeutic for the treatment of breast cancer.


2009 ◽  
Vol 37 (2) ◽  
pp. 209-218 ◽  
Author(s):  
Mathieu Vinken ◽  
Elke Decrock ◽  
Elke De Vuyst ◽  
Luc Leybaert ◽  
Tamara Vanhaecke ◽  
...  

This study was set up to critically evaluate a commonly-used in vitro model of hepatocellular apoptotic cell death, in which freshly isolated hepatocytes, cultured in a monolayer configuration, are exposed to a combination of Fas ligand and cycloheximide for six hours. A set of well-acknowledged cell death markers was addressed: a) cell morphology was studied by light microscopy; b) apoptotic and necrotic cell populations were quantified by in situ staining with Annexin-V, Hoechst 33342 and propidium iodide (PI); c) apoptotic and necrotic activities were monitored by probing caspase 3-like activity and measuring the extracellular leakage of lactate dehydrogenase (LDH), respectively; and d) the expression of apoptosis regulators was investigated by immunoblotting. The initiation of apoptosis was evidenced by the activation of caspase 8 and caspase 9, and increased Annexin-V reactivity. Progression through the apoptotic process was confirmed by the activation of caspase 3 and Bid, the enhanced expression of Bax, and the occurrence of nuclear fragmentation. Late transition to a necrotic appearance was demonstrated by an increased number of PI-positive cells and augmented extracellular release of LDH. Thus, the in vitro model allows the study of the entire course of Fas-mediated hepatocellular apoptotic cell death, which is not possible in vivo. This experimental system can serve a broad range of in vitro pharmaco-toxicological purposes, thereby directly assisting in the reduction of animal experimentation.


2020 ◽  
Vol 11 (10) ◽  
Author(s):  
Justyna Mączyńska ◽  
Chiara Da Pieve ◽  
Thomas A. Burley ◽  
Florian Raes ◽  
Anant Shah ◽  
...  

Abstract There is an urgent need to develop therapeutic approaches that can increase the response rate to immuno-oncology agents. Photoimmunotherapy has recently been shown to generate anti-tumour immunological responses by releasing tumour-associated antigens from ablated tumour cell residues, thereby enhancing antigenicity and adjuvanticity. Here, we investigate the feasibility of a novel HER2-targeted affibody-based conjugate (ZHER2:2395-IR700) selectively to induce cancer cell death in vitro and in vivo. The studies in vitro confirmed the specificity of ZHER2:2395-IR700 binding to HER2-positive cells and its ability to produce reactive oxygen species upon light irradiation. A conjugate concentration- and light irradiation-dependent decrease in cell viability was also demonstrated. Furthermore, light-activated ZHER2:2395-IR700 triggered all hallmarks of immunogenic cell death, as defined by the translocation of calreticulin to the cell surface, and the secretion of ATP, HSP70/90 and HMGB1 from dying cancer cells into the medium. Irradiating a co-culture of immature dendritic cells (DCs) and cancer cells exposed to light-activated ZHER2:2395-IR700 enhanced DC maturation, as indicated by augmented expression of CD86 and HLA-DR. In SKOV-3 xenografts, the ZHER2:2395-IR700-based phototherapy delayed tumour growth and increased median overall survival. Collectively, our results strongly suggest that ZHER2:2395-IR700 is a promising new therapeutic conjugate that has great potential to be applicable for photoimmunotherapy-based regimens.


2019 ◽  
Vol 39 (10) ◽  
Author(s):  
Jessica Tsalikis ◽  
Mena Abdel-Nour ◽  
Armin Farahvash ◽  
Matthew T. Sorbara ◽  
Stephanie Poon ◽  
...  

ABSTRACTProtein degradation pathways are critical for maintaining proper protein dynamics within the cell, and considerable efforts have been made toward the development of therapeutics targeting these catabolic processes. We report here that isoginkgetin, a naturally derived biflavonoid, sensitized cells undergoing nutrient starvation to apoptosis, induced lysosomal stress, and activated the lysosome biogenesis geneTFEB. Isoginkgetin treatment led to the accumulation of aggregates of polyubiquitinated proteins that colocalized strongly with the adaptor protein p62, the 20S proteasome, and the endoplasmic reticulum-associated degradation (ERAD) protein UFD1L. Isoginkgetin directly inhibited the chymotrypsin-like, trypsin-like, and caspase-like activities of the 20S proteasome and impaired NF-κB signaling, suggesting that the molecule may display its biological activity in part through proteasome inhibition. Importantly, isoginkgetin was effective at killing multiple myeloma (MM) cell linesin vitroand displayed a higher rate of cell death induction than the clinically approved proteasome inhibitor bortezomib. We propose that isoginkgetin disturbs protein homeostasis, leading to an excess of protein cargo that places a burden on the lysosomes/autophagic machinery, eventually leading to cancer cell death.


1996 ◽  
Vol 135 (6) ◽  
pp. 1889-1898 ◽  
Author(s):  
D Schadendorf ◽  
M A Kern ◽  
M Artuc ◽  
H L Pahl ◽  
T Rosenbach ◽  
...  

Human malignant melanoma is notoriously resistant to pharmacological modulation. We describe here for the first time that the synthetic retinoid CD437 has a strong dose-dependent antiproliferative effect on human melanoma cells (IC50: 5 x 10(-6) M) via the induction of programmed cell death, as judged by analysis of cell morphology, electron microscopical features, and DNA fragmentation. Programmed cell death was preceded by a strong activation of the AP-1 complex in CD437-treated cells as demonstrated by gel retardation and chloramphenicol transferase (CAT) assays. Northern blot analysis showed a time-dependent increase in the expression of c-fos and c-jun encoding components of AP-1, whereas bcl-2 and p53 mRNA levels remained constant. CD437 also exhibited a strong growth inhibitory effect on MeWo melanoma cells in a xenograft model. In tissue sections of CD437-treated MeWo tumors from these animals, apoptotic melanoma cells and c-fos overexpressing cells were colocalized by TdT-mediated deoxyuridine triphosphate-digoxigenin nick end labeling (TUNEL) staining and in situ hybridization. Taken together, this report identifies CD437 as a retinoid that activates and upregulates the transcription factor AP-1, leading eventually to programmed cell death of exposed human melanoma cells in vitro and in vivo. Further studies are needed to evaluate whether synthetic retinoids such as CD437 represent a new class of retinoids, which may open up new ways to a more effective therapy of malignant melanoma.


Sign in / Sign up

Export Citation Format

Share Document