scholarly journals Nonlinear Research and Efficient Parameter Identification of Magic Formula Tire Model

2017 ◽  
Vol 2017 ◽  
pp. 1-9 ◽  
Author(s):  
Zhun Cheng ◽  
Zhixiong Lu

The Magic Formula tire model can describe the mechanical properties of tire accurately and thus is applied in the research field of vehicle dynamics widely. The Magic Formula tire model has the characteristics of a great number of parameters and the high nonlinearity, so it is hard to identify parameters. Researchers generally use different intelligent optimization algorithms for parameter identification. However, in the process of parameter identification, with a few experimental data, parameter identification results generally have the low accuracy, while, in the case of a large number of experimental data, the amount of work done in the experiment will increase and there will be many experimental errors. To solve these problems, this paper researches the longitudinal force of tire and proposes an interpolation method and a method based on the nonlinear research of the tire force. The results of parameter identification experiments on the two kinds of tire data show that both of the two methods can be used for the parameter identification of Magic Formula tire model fast and accurately with only a few experimental data. In addition, this paper proposes a method estimating the maximum longitudinal force and corresponding slip rate.

2021 ◽  
Author(s):  
Junning Zhang ◽  
Shaopu YANG ◽  
Yongjie LU

Abstract In the study of vehicle dynamics, the accurate description of tire mechanical characteristics is the basis and key of vehicle dynamics simulation. An innovative tire model is proposed based on fuzzy algorithm and a sinusoidal membership function is used to design fuzzy rules. In order to ensure the accuracy of tire behavior calculation, this model is driven by a small amount of experimental data of tire mechanical characteristics. This tire model consists of four layers of fuzzy systems, each of which has a knowledge base. The data in knowledge base I is obtained by experiments, and the data of knowledge base II is computed by the upper system, and so is the later system. Then, the input signal, the change rate of side slip angle and slip rate, is considered to improve the calculation accuracy of the model. The proposed fuzzy tire model can accurately predict the longitudinal force, lateral force and self-aligning torque of the tire under unknown conditions. Finally, by comparing the fuzzy tire model with the experimental data, it is found that the maximum RRMSE (Relative Root Mean Square Error) value is not more than 0.14. It is proved that the model can accurately describe the tire
mechanical characteristics under combined conditions.


2013 ◽  
Vol 655-657 ◽  
pp. 558-561
Author(s):  
Peng Zhang ◽  
Le He ◽  
Xu Tao Liu ◽  
Qun Sheng Xia

Magic formula tire model under different conditions can be obtained by means of tire experimental data identification. The effects of speed and load on the tire cornering stiffness and peak friction coefficient under different conditions were analyzed. The results indicate that the variation of tire cornering stiffness and peak friction coefficient with the normal load at different speeds for both dry and wet conditions is a quadratic function. And the tire cornering stiffness decreases basically with the vehicle speed increasing on the wet roads due to hydroplaning effects. The peak friction coefficient decreases as the speed increases on wet roads, and it may not be less than one.


2010 ◽  
Vol 38 (3) ◽  
pp. 228-244 ◽  
Author(s):  
Nenggen Ding ◽  
Saied Taheri

Abstract Easy-to-use tire models for vehicle dynamics have been persistently studied for such applications as control design and model-based on-line estimation. This paper proposes a modified combined-slip tire model based on Dugoff tire. The proposed model takes emphasis on less time consumption for calculation and uses a minimum set of parameters to express tire forces. Modification of Dugoff tire model is made on two aspects: one is taking different tire/road friction coefficients for different magnitudes of slip and the other is employing the concept of friction ellipse. The proposed model is evaluated by comparison with the LuGre tire model. Although there are some discrepancies between the two models, the proposed combined-slip model is generally acceptable due to its simplicity and easiness to use. Extracting parameters from the coefficients of a Magic Formula tire model based on measured tire data, the proposed model is further evaluated by conducting a double lane change maneuver, and simulation results show that the trajectory using the proposed tire model is closer to that using the Magic Formula tire model than Dugoff tire model.


Author(s):  
Yingying Zhang ◽  
Shijie Zhang

This study proposes a 1D meanline program for the modeling of modern transonic axial multistage compressors. In this method, an improved blockage factor model is proposed. Work-done factor that varies with the compressor performance conditions is added in this program, and at the same time a notional blockage factor is kept. The coefficient of deviation angle model is tuned according to experimental data. In addition, two surge methods that originated from different sources are chosen to add in and compare with the new method called mass flow separation method. The salient issues presented here deal first with the construction of the compressor program. Three well-documented National Aerodynamics and Space Administration (NASA) axial transonic compressors are calculated, and the speedlines and aerodynamic parameters are compared with the experimental data to verify the reliability and robustness of the proposed method. Results show that consistent agreement can be obtained with such a performance prediction program. It was also apparent that the two common methods of surge prediction, which rely upon either stage or overall characteristic gradients, gave less agreement than the method called mass flow separation method.


Author(s):  
Stefan Hartmann ◽  
Rose Rogin Gilbert

AbstractIn this article, we follow a thorough matrix presentation of material parameter identification using a least-square approach, where the model is given by non-linear finite elements, and the experimental data is provided by both force data as well as full-field strain measurement data based on digital image correlation. First, the rigorous concept of semi-discretization for the direct problem is chosen, where—in the first step—the spatial discretization yields a large system of differential-algebraic equation (DAE-system). This is solved using a time-adaptive, high-order, singly diagonally-implicit Runge–Kutta method. Second, to study the fully analytical versus fully numerical determination of the sensitivities, required in a gradient-based optimization scheme, the force determination using the Lagrange-multiplier method and the strain computation must be provided explicitly. The consideration of the strains is necessary to circumvent the influence of rigid body motions occurring in the experimental data. This is done by applying an external strain determination tool which is based on the nodal displacements of the finite element program. Third, we apply the concept of local identifiability on the entire parameter identification procedure and show its influence on the choice of the parameters of the rate-type constitutive model. As a test example, a finite strain viscoelasticity model and biaxial tensile tests applied to a rubber-like material are chosen.


Author(s):  
S. C¸ag˘lar Bas¸lamıs¸lı ◽  
Selim Solmaz

In this paper, a control oriented rational tire model is developed and incorporated in a two-track vehicle dynamics model for the prospective design of vehicle dynamics controllers. The tire model proposed in this paper is an enhancement over previous rational models which have taken into account only the peaking and saturation behavior disregarding all other force generation characteristics. Simulation results have been conducted to compare the dynamics of a vehicle model equipped with a Magic Formula tire model, a rational tire model available in the literature and the present rational tire model. It has been observed that the proposed tire model results in vehicle responses that closely follow those obtained with the Magic Formula even for extreme driving scenarios conducted on roads with low adhesion coefficient.


2014 ◽  
Vol 540 ◽  
pp. 321-325
Author(s):  
Wei Zeng ◽  
Yan Rong Shi ◽  
Xiao Yan Deng

A micropipette aspiration technique was adopted to investigate the viscoelastic properties of phagocytes of arteriosclerotic origin. A standard linear solid model was employed to fit the experimental data and three viscoelastic coefficients were used to compare the mechanical properties of the phagocytes in different phases during arteriosclerostic development. The experimental results indicated that prior to the formation of arteriosclerosis, the mobility and deformability of the marcopahges matured from monocytes decreased, and their rigidity increased. At the initial stage of arteriosclerosis formation, the mobility and deformability of the foam-cells further decreased. This finding may have important implication in the research field of arteriosclerosis.


2018 ◽  
Vol 2018 ◽  
pp. 1-10 ◽  
Author(s):  
Wei Pan ◽  
Zhengtao Yan ◽  
Jingjun Lou ◽  
Shijian Zhu

In order to get a better description to the nonlinear characteristics of magnetorheological dampers, the magic formula is introduced into the general method of parametric modelling of magnetorheological dampers to propose a new parameterized model called magic formula-hysteresis loop model (MFM). The new model is simple in structure, the physical meaning of each parameter is clear, and the parameter identification is convenient. The fitting and experimental data of MFM and the phenomenon model under different conditions are applied for error analysis and comparison. The results show that the errors of MFM are more accurate and have better fitting and experimental data under different working conditions, which also have better adaptability and versatility.


Sign in / Sign up

Export Citation Format

Share Document