scholarly journals Tissue Source and Cell Expansion Condition Influence Phenotypic Changes of Adipose-Derived Stem Cells

2017 ◽  
Vol 2017 ◽  
pp. 1-15 ◽  
Author(s):  
Lauren H. Mangum ◽  
Shanmugasundaram Natesan ◽  
Randolph Stone ◽  
Nicole L. Wrice ◽  
David A. Larson ◽  
...  

Stem cells derived from the subcutaneous adipose tissue of debrided burned skin represent an appealing source of adipose-derived stem cells (ASCs) for regenerative medicine. Traditional tissue culture uses fetal bovine serum (FBS), which complicates utilization of ASCs in human medicine. Human platelet lysate (hPL) is one potential xeno-free, alternative supplement for use in ASC culture. In this study, adipogenic and osteogenic differentiation in media supplemented with 10% FBS or 10% hPL was compared in human ASCs derived from abdominoplasty (HAP) or from adipose associated with debrided burned skin (BH). Most (95–99%) cells cultured in FBS were stained positive for CD73, CD90, CD105, and CD142. FBS supplementation was associated with increased triglyceride content and expression of adipogenic genes. Culture in hPL significantly decreased surface staining of CD105 by 31% and 48% and CD142 by 27% and 35% in HAP and BH, respectively (p<0.05). Culture of BH-ASCs in hPL also increased expression of markers of osteogenesis and increased ALP activity. These data indicate that application of ASCs for wound healing may be influenced by ASC source as well as culture conditions used to expand them. As such, these factors must be taken into consideration before ASCs are used for regenerative purposes.

2006 ◽  
Vol 18 (2) ◽  
pp. 208 ◽  
Author(s):  
A. S. Lima ◽  
S. A. Malusky ◽  
M. R. B. Mello ◽  
S. J. Lane ◽  
J. R. Rivera ◽  
...  

A primary concern in stem cell biology is that observations made in vitro may be an artifact of the in vitro culture environment. In vitro derived stem cells can be implanted into the environment from which they are derived so that their response to physiological conditions may be observed. Several important cellular characteristics need to be examined following the cell's reintroduction to the in vivo environment, including the potential for differentiation, proliferative ability, and life span. Studying implanted stem cells will assist in determining the potential for stem cell use in clinical therapies and provide further understanding of the role adult stem cells have in the adult body. Currently, the scientific literature is lacking a detailed description of the cellular response of adipose-derived stem cells (ADSCs) reintroduced to their exact tissue of origin. Thus, the aim of this study was to evaluate porcine ADSC growth in vivo and to analyze cell differentiation in vivo following injection of undifferentiated ADSCs into subcutaneous fat. Subcutaneous adipose tissue was isolated from the back fat of male pigs (11 months of age) and digested with 0.075% collagenase at 37�C for 90 min. The digested tissue was centrifuged at 200g for 10 min to obtain a cell pellet. The pellet was re-suspended with DMEM and the ADSCs were plated onto 75 cm2 flasks (5000-10 000 cells per cm2) and cultured in DMEM supplemented with 10% fetal bovine serum (FBS) and 1% gentamicin. Passage 3 ADSCs were labeled with fluorescent dye (PKH26; Sigma, St. Louis, MO, USA) and sorted by flow cytometry. After sorting, positive cells were washed and re-suspended in culture medium. For transplantation, 100 �L of cell suspension in DMEM containing one of four cell concentrations (0 (control); 30 000; 300 000; and 900 000 cells) were placed in a 1-mL syringe and injected into the subcutaneous back fat of recipient pigs (n = 2). Each pig had previously been tattooed with 12 13 � 13 squares to mark injection sites. The treatments were replicated three times within each animal. Two and three weeks after transplantation, animals were euthanized, the back fat containing the transplantation site was harvested, and the cells were disaggregated as described above. The buoyant adipocytes and pelleted ADSCs cells were then analyzed by flow cytometry. The results indicated that there were dose- and time-dependent increases in labeled ADSCs and labeled adipocytes in the fat samples with increasing cell number (from 0 to 300 000 cells). There was, however, a decrease in labeled ADSCs at the 900 000-cell dose, which is likely due to excess cells being transplanted or an immune reaction. Both of these aspects are currently being evaluated. In conclusion, undifferentiated ADSCs from swine can be isolated from and returned to the subcutaneous adipose layer and differentiate into mature adipocytes. This work was supported by the Council for Food and Agricultural Research (C-FAR) Sentinel Program, University of Illinois.


2017 ◽  
Vol 26 (5) ◽  
pp. 855-866 ◽  
Author(s):  
Sang Woo Lee ◽  
Jae Uk Chong ◽  
Seon Ok Min ◽  
Seon Young Bak ◽  
Kyung Sik Kim

Falciform ligaments in the liver are surrounded by adipose tissue. We investigated the capability of adipose-derived stem cells from human liver falciform ligaments (hLF-ADSCs) to differentiate into hepatic-type cells and confirmed the functional capacity of the cells. Mesenchymal stem cells (MSCs) were isolated from the liver falciform ligament and abdominal subcutaneous adipose tissue in patients undergoing partial hepatectomy for liver disease. Cells were cultivated in MSC culture medium. Properties of MSCs were confirmed by flow cytometry, RT-PCR analysis, immunocytochemistry assays, and multilineage differentiation. Hepatic induction was performed using a three-step differentiation protocol with various growth factors. Morphology, capacity for expansion, and characteristics were similar between hLF-ADSCs and adipose-derived stem cells from human abdominal subcutaneous adipose tissue (hAS-ADSCs). However, hematopoietic– and mesenchymal–epithelial transition (MET)-related surface markers (CD133, CD34, CD45, and E-cadherin) had a higher expression in hLF-ADSCs. The hepatic induction marker genes had a higher expression in hLF-ADSCs on days 7 and 10 after the hepatic induction. Albumin secretion was similar between hLF-ADSCs and hAS-ADSCs at 20 days after the hepatic induction. The hLF-ADSCs had a different pattern of surface marker expression relative to hAS-ADSCs. However, proliferation, multilineage capacity, and hepatic induction were similar between the cell types. Accordingly, it may be a useful source of MSCs for patients with liver disease.


2017 ◽  
Vol 4 (S) ◽  
pp. 166
Author(s):  
Anh Nguyen Tu Bui ◽  
Cong Le Thanh Nguyen ◽  
Anh Thi Minh Nguyen ◽  
Nhat Chau Truong ◽  
Ngoc Kim Phan ◽  
...  

Background: Type 2 diabetes (T2D) is the most common form of diabetes and accounts for 90-95% of all existing diabetic cases. The main etiologies of T2D include insulin resistance in target tissues, insufficient secretion of insulin and subsequent decline of pancreatic β-cell function. Recently, many studies have suggested that adipose – derived stem cells (ASCs) were potential to alleviate insulin resistance and hyperglycemia and promote the islets repair. In this study, ASCs were hypothesized that they could have ameliorative effects on type 2 diabetic mice.  Methods: Type 2 diabetic mice were induced by a combination of high-fat diet and injection of STZ 100 mg/kg and NA 120 mg/kg. Thereafter, two doses of 106 human ASCs were transplanted 2 week interval into each mouse via the tail vein. The mice were monitored health condition, rate of mortaity, body weight, consumption of food and water, blood glucose level, serum insulin level and histological structure of pancreatic islets.  Results: Our results indicated that the ASC-treated mice expressed improved condition in comparision with non-treated diabetic mice. The consumption of food and water as well as the blood glucose level decreased. Simultaneously, ASC transplantation improved the impaired glucose tolerance and insulin tolerance in T2D mice. Besides, the total cholesterol have significantly decreased.  Conclusion: it is suggested that human ASCs infusion is safe and effective for type 2 diabetes mellitus in mice regarding the improved glucose metabolism and insulin resistance.


Author(s):  
Andreina Bruno ◽  
Caterina Di Sano ◽  
Hans-Uwe Simon ◽  
Pascal Chanez ◽  
Angelo Maria Patti ◽  
...  

Adipose tissue is widely recognized as an extremely active endocrine organ producing adipokines as leptin that bridge metabolism and the immune system. Pre-B-cell leukemia homeobox (Pbx)-regulating protein-1 (PREP1) is a ubiquitous homeodomain transcription factor involved in the adipogenic differentiation and insulin-sensitivity processes. Leptin, as pleiotropic adipokine, and TGF-β, known to be expressed by primary pre-adipocytes [adipose-derived stem cells (ASCs)] and mature differentiated adipocytes, modulate inflammatory responses. We aimed to assess for the first time if leptin and TGF-β interfere with PREP1 expression in both ASCs and mature differentiated adipocytes. Human ASCs were isolated from subcutaneous adipose liposuction and, after expansion, fully differentiated to mature adipocytes. In both ASCs and adipocytes, leptin and TGF-β1 significantly decreased the expression of PREP1, alone and following concurrent Toll-like receptor 4 (TLR4) activation. Moreover, in adipocytes, but not in ASCs, leptin increased TLR4 and IL-33 expression, whereas TGF-β1 enhanced TLR4 and IL-6 expression. Taken together, we provide evidence for a direct regulation of PREP1 by leptin and TGF-β1 in ASCs and mature adipocytes. The effects of leptin and TGF-β1 on immune receptors and cytokines, however, are limited to mature adipocytes, suggesting that modulating immune responses depends on the differentiation of ASCs. Further studies are needed to fully understand the regulation of PREP1 expression and its potential for the development of new therapeutic approaches in obesity-related diseases.


Sign in / Sign up

Export Citation Format

Share Document