scholarly journals The Role of Costimulation Blockade in Solid Organ and Islet Xenotransplantation

2017 ◽  
Vol 2017 ◽  
pp. 1-11 ◽  
Author(s):  
Kannan P. Samy ◽  
James R. Butler ◽  
Ping Li ◽  
David K. C. Cooper ◽  
Burcin Ekser

Pig-to-human xenotransplantation offers a potential bridge to the growing disparity between patients with end-stage organ failure and graft availability. Early studies attempting to overcome cross-species barriers demonstrated robust humoral immune responses to discordant xenoantigens. Recent advances have led to highly efficient and targeted genomic editing, drastically altering the playing field towards rapid production of less immunogenic porcine tissues and even the discussion of human xenotransplantation trials. However, as these humoral immune barriers to cross-species transplantation are overcome with advanced transgenics, cellular immunity to these novel xenografts remains an outstanding issue. Therefore, understanding and optimizing immunomodulation will be paramount for successful clinical xenotransplantation. Costimulation blockade agents have been introduced in xenotransplantation research in 2000 with anti-CD154mAb. Most recently, prolonged survival has been achieved in solid organ (kidney xenograft survival > 400 days with anti-CD154mAb, heart xenograft survival > 900 days, and liver xenograft survival 29 days with anti-CD40mAb) and islet xenotransplantation (>600 days with anti-CD154mAb) with the use of these potent experimental agents. As the development of novel genetic modifications and costimulation blocking agents converges, we review their impact thus far on preclinical xenotransplantation and the potential for future application.

2018 ◽  
Vol 2018 ◽  
pp. 1-2 ◽  
Author(s):  
Kannan P. Samy ◽  
James R. Butler ◽  
Ping Li ◽  
David K. C. Cooper ◽  
Burcin Ekser

2022 ◽  
Author(s):  
Kapil K. Saharia ◽  
Jennifer S. Husson ◽  
Silke V. Niederhaus ◽  
Thierry Iraguha ◽  
Stephanie V. Avila ◽  
...  

BACKGROUND: Solid organ transplant recipients (SOTR), who typically receive post-transplant immunosuppression, show increased COVID-19-related mortality. It is unclear whether an additional dose of COVID-19 vaccines in SOTR can overcome the reduced immune responsiveness against Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) variants. METHODS: We performed a prospective cohort study of 53 SOTR receiving SARS-CoV-2 vaccination into a prospective cohort study performing detailed immunoprofiling of humoral immune responses against SARS-CoV-2 and its variants. RESULTS: Prior to the additional vaccine dose, 60.3% of SOTR showed no measurable neutralization and only 18.9% demonstrated neutralizing activity of >90% following two vaccine doses. More intensive immunosuppression, antimetabolites in particular, negatively impacted antiviral immunity. While absolute IgG levels were lower in SOTR than controls, antibody titers against microbial recall antigens were in fact higher. In contrast, SOTR showed reduced vaccine-induced IgG/IgA antibody titers against SARS-CoV-2 and its delta variants. Vaccinated SOTR showed a markedly fewer linear B cell epitopes, indicating reduced B cell diversity. Importantly, a third vaccine dose led to an increase in anti-SARS-CoV-2 antibody titers and neutralizing activity across alpha, beta and delta variants. However, we observed a significant decrease in anti-spike antibody titers with the omicron variant. CONCLUSIONS: Only a small subgroup of SOTR generated functionally relevant antibodies after completing the initial vaccine series based on dysfunctional priming of immune responses against novel antigens. An additional dose of the vaccine results in dramatically improved antibody responses against all SARS-CoV-2 variants except omicron.


1997 ◽  
Vol 27 (11) ◽  
pp. 1285-1291 ◽  
Author(s):  
M. N. KOLOPP-SARDA ◽  
D. A. MONERET-VAUTRIN ◽  
B. GOBERT ◽  
G. KANNY ◽  
M. BRODSCHII ◽  
...  

Author(s):  
Hesam Dorosti ◽  
Navid Nezafat ◽  
Reza Heidari ◽  
Mohammad Bagher Ghoshoon ◽  
Ahmad Gholami ◽  
...  

Background: Streptococcus pneumoniae is a leading cause of pneumonia, mostly in children less than five years and elderly people. Although the pneumoniae polysaccharide vaccine (PPV) and pneumonia conjugate vaccines (PCV) are the efficient pneumococcal vaccine in adult and children groups, but the serotype replacement of S. pneumoniae strains causes the reduction in the efficacy of PPV and PCV vaccines. Epitope-based vaccines are a promising alternative to the present capsular antigen vaccines. Methods: In this study, we evaluated cellular and humoral immune responses induced by our novel designed multi-epitope vaccine in BALB/c mice. CD8+ cytolytic T lymphocytes (CTLs) epitopes were selected from PspA and CbpA antigens, and CD4+ helper T lymphocytes (HTLs) epitopes were chosen from PhtD and PiuA antigens. PorB, the TLR2 agonist, as an adjuvant, was employed to increase the immunogenicity of the vaccine. Results and conclusion: The high levels of specific anti-peptide vaccine IgG and an increase in the level of IgG2 in the vaccinated group demonstrated our vaccine could elicit a robust antibody production. The significant increase in IFN-γ, IL-2, TNF-α, IL-4, IL-6, and decrease in IL-10 showed that, the designed vaccine could be proposed as the efficient preventative pneumococcal vaccine in the mouse model.


2021 ◽  
Author(s):  
Michael Whitehead ◽  
Andrew Osborne ◽  
Patrick Yu‐Wai‐Man ◽  
Keith Martin

2020 ◽  
Vol 4 (Supplement_1) ◽  
pp. 271-272
Author(s):  
Janna Shapiro ◽  
Helen Kuo ◽  
Rosemary Morgan ◽  
Huifen Li ◽  
Sabra Klein ◽  
...  

Abstract Older adults bear the highest burden of severe disease and complications associated with seasonal influenza, with annual vaccination serving as the best option for protection. Variability in vaccine efficacy exists, yet the host factors that affect immune responses to inactivated influenza vaccines (IIV) are incompletely understood. We hypothesized that sex and frailty interact to affect vaccine-induced humoral responses among older adults. To test this hypothesis, community-dwelling adults above 75 years of age were recruited yearly, assessed for frailty (as defined by the Cardiovascular Health Study criteria), and vaccinated with the high-dose trivalent IIV. Humoral immune responses were evaluated via hemagglutination inhibition titers. The study began during the 2014-2015 influenza season, with yearly cohorts ranging from 76-163 individuals. A total of 617 vaccinations were delivered from 2014-2019. In preliminary analyses, the outcome of interest was seroconversion, defined as ≥ 4-fold rise in titers. Crude odds ratios suggest that females are more likely to seroconvert to influenza A strains (H1N1: OR = 1.39, (0.98-1.96) ; H3N2: 1.17 (0.85 – 1.62)), while males are more likely to seroconvert to the B strain (OR = 0.85 (0.60 – 1.22)). Furthermore, this sex difference was modified by frailty – for example, the odds of seroconversion to H1N1 were 65% higher for females than males among those who were nonfrail, and only 30% higher among females who were frail. Together, these results suggest that sex and frailty interact to impact immune responses to influenza vaccines. These findings may be leveraged to better protect vulnerable populations.


Sign in / Sign up

Export Citation Format

Share Document