scholarly journals Serum Proteome Alterations in Patients with Cognitive Impairment after Traumatic Brain Injury Revealed by iTRAQ-Based Quantitative Proteomics

2017 ◽  
Vol 2017 ◽  
pp. 1-13 ◽  
Author(s):  
Xin-gui Xiong ◽  
Qinghua Liang ◽  
Chunhu Zhang ◽  
Yang Wang ◽  
Wei Huang ◽  
...  

Background. Cognitive impairment is the leading cause of traumatic brain injury- (TBI-) related disability; however, the underlying pathogenesis of this dysfunction is not completely understood. Methods. Using an isobaric tagging for relative and absolute quantitation- (iTRAQ-) based quantitative proteomic approach, serum samples from healthy control subjects, TBI patients with cognitive impairment, and TBI patients without cognitive impairment were analysed to identify differentially expressed proteins (DEPs) related to post-TBI cognitive impairment. In addition, DEPs were further analysed using bioinformatic platforms and validated using enzyme-linked immunosorbent assays (ELISA). Results. A total of 56 DEPs were identified that were specifically related to TBI-induced cognitive impairment. Bioinformatic analysis revealed that a wide variety of cellular and metabolic processes and some signaling pathways were involved in the pathophysiology of cognitive deficits following TBI. Five randomly selected DEPs were validated using ELISA in an additional 105 cases, and the results also supported the experimental findings. Conclusions. Despite limitations, our findings will facilitate further studies of the pathological mechanisms underlying TBI-induced cognitive impairment and provide new methods for the research and development of neuroprotective agents. However, further investigation on a large cohort is warranted.

2020 ◽  
Vol 3 (1) ◽  
pp. 44-46
Author(s):  
Istatillo Shodjalilov ◽  
◽  
Saoda Igamova ◽  
Aziza Djurabekova

The incidence of cognitive impairment in TBI is high, depending on the severity. At the same time, psychopathological symptoms in the form of asthenia, increased anxiety and depression are encountered among patients with TBI. The work studied the relationship between cognitive and psychopathological symptoms in patients with TBI using neuropsychological testing on scales.


ASN NEURO ◽  
2020 ◽  
Vol 12 ◽  
pp. 175909142091476
Author(s):  
Joseph O. Ojo ◽  
Gogce Crynen ◽  
Moustafa Algamal ◽  
Prashanti Vallabhaneni ◽  
Paige Leary ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Gregory Simchick ◽  
Kelly M. Scheulin ◽  
Wenwu Sun ◽  
Sydney E. Sneed ◽  
Madison M. Fagan ◽  
...  

AbstractFunctional magnetic resonance imaging (fMRI) has significant potential to evaluate changes in brain network activity after traumatic brain injury (TBI) and enable early prognosis of potential functional (e.g., motor, cognitive, behavior) deficits. In this study, resting-state and task-based fMRI (rs- and tb-fMRI) were utilized to examine network changes in a pediatric porcine TBI model that has increased predictive potential in the development of novel therapies. rs- and tb-fMRI were performed one day post-TBI in piglets. Activation maps were generated using group independent component analysis (ICA) and sparse dictionary learning (sDL). Activation maps were compared to pig reference functional connectivity atlases and evaluated using Pearson spatial correlation coefficients and mean ratios. Nonparametric permutation analyses were used to determine significantly different activation areas between the TBI and healthy control groups. Significantly lower Pearson values and mean ratios were observed in the visual, executive control, and sensorimotor networks for TBI piglets compared to controls. Significant differences were also observed within several specific individual anatomical structures within each network. In conclusion, both rs- and tb-fMRI demonstrate the ability to detect functional connectivity disruptions in a translational TBI piglet model, and these disruptions can be traced to specific affected anatomical structures.


Author(s):  
Douglas D. Fraser ◽  
Michelle Chen ◽  
Annie Ren ◽  
Michael R. Miller ◽  
Claudio Martin ◽  
...  

Abstract Objectives Severe traumatic brain injury (sTBI) patients suffer high mortality. Accurate prognostic biomarkers have not been identified. In this exploratory study, we performed targeted proteomics on plasma obtained from sTBI patients to identify potential outcome biomarkers. Methods Blood sample was collected from patients admitted to the ICU suffering a sTBI, using standardized clinical and computerized tomography (CT) imaging criteria. Age- and sex-matched healthy control subjects and sTBI patients were enrolled. Targeted proteomics was performed on plasma with proximity extension assays (1,161 proteins). Results Cohorts were well-balanced for age and sex. The majority of sTBI patients were injured in motor vehicle collisions and the most frequent head CT finding was subarachnoid hemorrhage. Mortality rate for sTBI patients was 40%. Feature selection identified the top performing 15 proteins for identifying sTBI patients from healthy control subjects with a classification accuracy of 100%. The sTBI proteome was dominated by markers of vascular pathology, immunity/inflammation, cell survival and macrophage/microglia activation. Receiver operating characteristic (ROC) curve analyses demonstrated areas-under-the-curves (AUC) for identifying sTBI that ranged from 0.870-1.000 (p≤0.005). When mortality was used as outcome, ROC curve analyses identified the top 3 proteins as vWF, WIF-1, and CSF-1. Combining vWF with either WIF-1 or CSF-1 resulted in excellent mortality prediction with AUC of 1.000 for both combinations (p=0.011). Conclusions Targeted proteomics with feature classification and selection distinguished sTBI patients from matched healthy control subjects. Two protein combinations were identified that accurately predicted sTBI patient mortality. Our exploratory findings require confirmation in larger sTBI patient populations.


Biomedicines ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 36
Author(s):  
Rany Vorn ◽  
Maiko Suarez ◽  
Jacob C. White ◽  
Carina A. Martin ◽  
Hyung-Suk Kim ◽  
...  

Chronic mild traumatic brain injury (mTBI) has long-term consequences, such as neurological disability, but its pathophysiological mechanism is unknown. Exosomal microRNAs (exomiRNAs) may be important mediators of molecular and cellular changes involved in persistent symptoms after mTBI. We profiled exosomal microRNAs (exomiRNAs) in plasma from young adults with or without a chronic mTBI to decipher the underlying mechanisms of its long-lasting symptoms after mTBI. We identified 25 significantly dysregulated exomiRNAs in the chronic mTBI group (n = 29, with 4.48 mean years since the last injury) compared to controls (n = 11). These miRNAs are associated with pathways of neurological disease, organismal injury and abnormalities, and psychological disease. Dysregulation of these plasma exomiRNAs in chronic mTBI may indicate that neuronal inflammation can last long after the injury and result in enduring and persistent post-injury symptoms. These findings are useful for diagnosing and treating chronic mTBIs.


Sign in / Sign up

Export Citation Format

Share Document