scholarly journals Softwarization of Mobile Network Functions towards Agile and Energy Efficient 5G Architectures: A Survey

2017 ◽  
Vol 2017 ◽  
pp. 1-21 ◽  
Author(s):  
Dlamini Thembelihle ◽  
Michele Rossi ◽  
Daniele Munaretto

Future mobile networks (MNs) are required to be flexible with minimal infrastructure complexity, unlike current ones that rely on proprietary network elements to offer their services. Moreover, they are expected to make use of renewable energy to decrease their carbon footprint and of virtualization technologies for improved adaptability and flexibility, thus resulting in green and self-organized systems. In this article, we discuss the application of software defined networking (SDN) and network function virtualization (NFV) technologies towards softwarization of the mobile network functions, taking into account different architectural proposals. In addition, we elaborate on whether mobile edge computing (MEC), a new architectural concept that uses NFV techniques, can enhance communication in 5G cellular networks, reducing latency due to its proximity deployment. Besides discussing existing techniques, expounding their pros and cons and comparing state-of-the-art architectural proposals, we examine the role of machine learning and data mining tools, analyzing their use within fully SDN- and NFV-enabled mobile systems. Finally, we outline the challenges and the open issues related to evolved packet core (EPC) and MEC architectures.

Author(s):  
Vishal Kaushik ◽  
Ajay Sharma ◽  
Ravi Tomar

Software-defined networking (SDN) is an emerging network architecture that facilitates the network administrator to control and manage network behavior dynamically. Different from traditional networks, software-defined networks support dynamic and scalable computing. The dynamic behavior is achieved by decoupling or disassociating the system. The swing of control from tightly bound individual networks to assessable computing devices enables infrastructure abstraction. Due to the abstraction, the network can be considered as a logical or virtual entity. In this chapter, relation between network function virtualization (NFV) and software-defined networking (SDN) has been outlined. This chapter focuses on describing the pros and cons of NFV technologies. network functions virtualization (NFV) was founded under the work of the European Telecommunications Standards Institute (ETSI).


2018 ◽  
Author(s):  
Phanidra Palagummi ◽  
Vedant Somani ◽  
Krishna M. Sivalingam ◽  
Balaji Venkat

Networking connectivity is increasingly based on wireless network technologies, especially in developing nations where the wired network infrastructure is not accessible to a large segment of the population. Wireless data network technologies based on 2G and 3G are quite common globally; 4G-based deployments are on the rise during the past few years. At the same time, the increasing high-bandwidth and low-latency requirements of mobile applications has propelled the Third Generation Partnership Project (3GPP) standards organization to develop standards for the next generation of mobile networks, based on recent advances in wireless communication technologies. This standard is called the Fifth Generation (5G) wireless network standard. This paper presents a high-level overview of the important architectural components, of the advanced communication technologies, of the advanced networking technologies such as Network Function Virtualization and other important aspects that are part of the 5G network standards. The paper also describes some of the common future generation applications that require low-latency and high-bandwidth communications.


Author(s):  
Lalit Pandey

This chapter is focused on the traditional network architecture limitations with NFV benefits. Discussion of NFV architecture and framework as well as management and orchestration has been discussed in this chapter. Cisco VNF portfolio and virtual network functions implementation is included with software implementation of the architecture of NFV (network function virtualization). Management and orchestration functional layers as per ETSI standard. The challenges in NFV implementation is also a concern today, which is a part of this chapter.


Author(s):  
Eric Debeau ◽  
Veronica Quintuna-Rodriguez

The ever-increasing complexity of networks and services advocates for the introduction of automation techniques to facilitate the design, the delivery, and the operation of such networks and services. The emergence of both network function virtualization (NFV) and software-defined networks (SDN) enable network flexibility and adaptability which open the door to on-demand services requiring automation. In aim of holding the increasing number of customized services and the evolved capabilities of public networks, the open network automation platform (ONAP), which is in open source, particularly addresses automation techniques while enabling dynamic orchestration, optimal resource allocation capabilities, and end-to-end service lifecycle management. This chapter addresses the key ONAP features that can be used by industrials and operators to automatically manage and orchestrate a wide set of services ranging from elementary network functions (e.g., firewalls) to more complex services (e.g., 5G network slices).


Author(s):  
Christos Bouras ◽  
Anastasia Kollia ◽  
Andreas Papazois

This article describes how novel functionalities will take advantage of the cloud networking and will gradually replace the existing infrastructure of mobile networks with a virtualized one. Two technologies, namely software defined networking (SDN) and network function virtualization (NFV), offer their important benefits and a combination of them is an answer to the demands raised, such as central office re-architected as a data center (CORD). Open network operating system (ONOS) and POX are SDN controllers and offer an option to combine SDN and NFV addressing many ongoing problems in the field of mobile networks. In this paper, technologies and both controllers are compared and contrasted. Indicative cases of topologies are simulated and help evaluating both controllers. According to the experimental findings, ONOS is one of the most important controllers for practical, theoretical, research and educational purposes, while POX is a useful and simpler controller for other educative applications.


2019 ◽  
Vol 11 (3) ◽  
pp. 69 ◽  
Author(s):  
Aris Leivadeas ◽  
George Kesidis ◽  
Mohamed Ibnkahla ◽  
Ioannis Lambadaris

Network Function Virtualization (NFV) has revolutionized the way network services are offered to end users. Individual network functions are decoupled from expensive and dedicated middleboxes and are now provided as software-based virtualized entities called Virtualized Network Functions (VNFs). NFV is often complemented with the Cloud Computing paradigm to provide networking functions to enterprise customers and end-users remote from their premises. NFV along with Cloud Computing has also started to be seen in Internet of Things (IoT) platforms as a means to provide networking functions to the IoT traffic. The intermix of IoT, NFV, and Cloud technologies, however, is still in its infancy creating a rich and open future research area. To this end, in this paper, we propose a novel approach to facilitate the placement and deployment of service chained VNFs in a network cloud infrastructure that can be extended using the Mobile Edge Computing (MEC) infrastructure for accommodating mission critical and delay sensitive traffic. Our aim is to minimize the end-to-end communication delay while keeping the overall deployment cost to minimum. Results reveal that the proposed approach can significantly reduce the delay experienced, while satisfying the Service Providers’ goal of low deployment costs.


2018 ◽  
Vol 2018 ◽  
pp. 1-11 ◽  
Author(s):  
Qianqiao Chen ◽  
Vaibhawa Mishra ◽  
Jose Nunez-Yanez ◽  
Georgios Zervas

The software defined network and network function virtualization are proposed to address the network ossification issue in current Internet infrastructure. Network functions and services are implemented as software applications to increase the programmability of network. However, involving general purpose processors in data plane restricts the bandwidth of network services. Therefore, to keep both the bandwidth and flexibility, a FPGA platform is suggested as a reconfigurable platform to deliver high bandwidth virtual network functions on data plane. In this paper, the FPGA resource has been virtualized by interconnecting partial reconfigurable regions to deliver high bandwidth reconfigurable processing on network streams. With the help of partial reconfiguration technology, network functions on our platform can be configured without affecting other functions on the same FPGA device. The on-chip interconnect system is further evaluated by comparing with existing network-on-chip system. A reconfiguration process is also proposed and demonstrated that it can be performed on our platform. The process can happen in the real time of network services and it is able to keep the original function working during the download of partial bitstream.


2021 ◽  
Author(s):  
Abdelfatteh Haidine ◽  
Fatima Zahra Salmam ◽  
Abdelhak Aqqal ◽  
Aziz Dahbi

The deployment of 4G/LTE (Long Term Evolution) mobile network has solved the major challenge of high capacities, to build real broadband mobile Internet. This was possible mainly through very strong physical layer and flexible network architecture. However, the bandwidth hungry services have been developed in unprecedented way, such as virtual reality (VR), augmented reality (AR), etc. Furthermore, mobile networks are facing other new services with extremely demand of higher reliability and almost zero-latency performance, like vehicle communications or Internet-of-Vehicles (IoV). Using new radio interface based on massive MIMO, 5G has overcame some of these challenges. In addition, the adoption of software defend networks (SDN) and network function virtualization (NFV) has added a higher degree of flexibility allowing the operators to support very demanding services from different vertical markets. However, network operators are forced to consider a higher level of intelligence in their networks, in order to deeply and accurately learn the operating environment and users behaviors and needs. It is also important to forecast their evolution to build a pro-actively and efficiently (self-) updatable network. In this chapter, we describe the role of artificial intelligence and machine learning in 5G and beyond, to build cost-effective and adaptable performing next generation mobile network. Some practical use cases of AI/ML in network life cycle are discussed.


Author(s):  
Bharathkumar Ravichandran

In the fifth generation mobile communication architecture (5G), network functions which traditionally existed as discrete hardware entities based on custom architectures, are replaced with dynamic, scalable Virtual Network Functions (VNF) that run on general purpose (x86) cloud computing platforms, under the paradigm Network Function Virtualization (NFV). The shift towards a virtualized infrastructure poses its own set of security challenges that need to be addressed. One such challenge that we seek to address in this paper is providing integrity, authenticity and confidentiality protection for VNFs.


2019 ◽  
Author(s):  
José Castillo-Lema ◽  
Augusto José Venâncio Neto ◽  
Flavio de Oliveira Silva ◽  
Sergio Takeo Kofuji

Network Functions Virtualization (NFV) offers an alternative way to design, deploy, and manage networking functions and services by leveraging virtualization technologies to consolidate network functions into general-purpose hardware platforms. On the past years extensive effort has been made to evolve and mature NFV tecnologies over IP networks. However, little or no attempts at all have been made to incorporate NFV into Information-Centric Networks (ICN). This work explores the use and implementation of virtual Network Funtions (VNFS)in Content-Centric Networks (CCN), and proposes the use of the Named Function Networking (NFN) paradigm as means to implement network functions and services in this kind of networks, distributing the network functions and services through the networks nodes and providing flexibility to dynamically place functions in the network as required and without the need of a central controller.


Sign in / Sign up

Export Citation Format

Share Document