scholarly journals MS-Based Analytical Techniques: Advances in Spray-Based Methods and EI-LC-MS Applications

2018 ◽  
Vol 2018 ◽  
pp. 1-24 ◽  
Author(s):  
Federica Bianchi ◽  
Nicolò Riboni ◽  
Veronica Termopoli ◽  
Lucia Mendez ◽  
Isabel Medina ◽  
...  

Mass spectrometry is the most powerful technique for the detection and identification of organic compounds. It can provide molecular weight information and a wealth of structural details that give a unique fingerprint for each analyte. Due to these characteristics, mass spectrometry-based analytical methods are showing an increasing interest in the scientific community, especially in food safety, environmental, and forensic investigation areas where the simultaneous detection of targeted and nontargeted compounds represents a key factor. In addition, safety risks can be identified at the early stage through online and real-time analytical methodologies. In this context, several efforts have been made to achieve analytical instrumentation able to perform real-time analysis in the native environment of samples and to generate highly informative spectra. This review article provides a survey of some instrumental innovations and their applications with particular attention to spray-based MS methods and food analysis issues. The survey will attempt to cover the state of the art from 2012 up to 2017.

2020 ◽  
Vol 58 (9) ◽  
Author(s):  
Alexander G. Shaw ◽  
Manasi Majumdar ◽  
Catherine Troman ◽  
Áine O’Toole ◽  
Blossom Benny ◽  
...  

ABSTRACT Global poliovirus surveillance involves virus isolation from stool and environmental samples, intratypic differential (ITD) by PCR, and sequencing of the VP1 region to distinguish vaccine (Sabin), vaccine-derived, and wild-type polioviruses and to ensure an appropriate response. This cell culture algorithm takes 2 to 3 weeks on average between sample receipt and sequencing. Direct detection of viral RNA using PCR allows faster detection but has traditionally faced challenges related to poor sensitivity and difficulties in sequencing common samples containing poliovirus and enterovirus mixtures. We present a nested PCR and nanopore sequencing protocol that allows rapid (<3 days) and sensitive direct detection and sequencing of polioviruses in stool and environmental samples. We developed barcoded primers and a real-time analysis platform that generate accurate VP1 consensus sequences from multiplexed samples. The sensitivity and specificity of our protocol compared with those of cell culture were 90.9% (95% confidence interval, 75.7% to 98.1%) and 99.2% (95.5% to 100.0%) for wild-type 1 poliovirus, 92.5% (79.6% to 98.4%) and 98.7% (95.4% to 99.8%) for vaccine and vaccine-derived serotype 2 poliovirus, and 88.3% (81.2% to 93.5%) and 93.2% (88.6% to 96.3%) for Sabin 1 and 3 poliovirus alone or in mixtures when tested on 155 stool samples in Pakistan. Variant analysis of sequencing reads also allowed the identification of polioviruses and enteroviruses in artificial mixtures and was able to distinguish complex mixtures of polioviruses in environmental samples. The median identity of consensus nanopore sequences with Sanger or Illumina sequences from the same samples was >99.9%. This novel method shows promise as a faster and safer alternative to cell culture for the detection and real-time sequencing of polioviruses in stool and environmental samples.


2011 ◽  
Vol 60 (4) ◽  
pp. 459-466 ◽  
Author(s):  
Spencer D. Polley ◽  
Samuel Boadi ◽  
Julie Watson ◽  
Alan Curry ◽  
Peter L. Chiodini

Diagnosis of microsporidial infections is routinely performed by light microscopy, with unequivocal non-molecular species identification achievable only through electron microscopy. This study describes a single SYBR Green real-time PCR assay for the simultaneous detection and species identification of such infections. This assay was highly sensitive, routinely detecting infections containing 400 parasites (g stool sample)−1, whilst species identification was achieved by differential melt curves on a Corbett Life Science Rotor-Gene 3000. A modification of the QIAamp DNA tissue extraction protocol allowed the semi-automated extraction of DNA from stools for the routine diagnosis of microsporidial infection by real-time PCR. Of 168 stool samples routinely analysed for microsporidian spores, only five were positive by microscopy. By comparison, 17 were positive for microsporidial DNA by real-time analysis, comprising 14 Enterocytozoon bieneusi, one Encephalitozoon cuniculi and two separate Pleistophora species infections.


2020 ◽  
Author(s):  
Mathias Paul ◽  
Katarina Laketic ◽  
J Scott McIndoe

Xantphos is a wide bite angle bisphosphine ligand that finds wide application in catalysis. Tracking its behavior during reactions under realistic reaction conditions can be difficult at low concentrations, and while electrospray ionization mass spectrometry (ESI-MS) is effective at real-time monitoring of catalytic reactions, it can only observe ions. Accordingly, we experimented with the dianionic disulfonated version of xantphos as a charged tag for mechanistic analysis. It proved to behave exactly as hoped, providing good intensity and enabled the direct study of both an initial binding event (to copper, very fast) and a subsequent transfer to another metal (palladium). Its dianionic nature makes it especially promising for the study of reactions in which metals change charge state, because a cationic metal complex with an anionic ligand is an invisible zwitterion, whereas a dianionic ligand would instead make the same cationic complex appear due to the overall charge of −1. As such, disulfonated xantphos holds genuine promise as a mechanistic probe in real time analysis using mass spectrometry.


2019 ◽  
Vol 5 (11) ◽  
pp. eaax0649 ◽  
Author(s):  
Wenya He ◽  
Chunya Wang ◽  
Huimin Wang ◽  
Muqiang Jian ◽  
Wangdong Lu ◽  
...  

Wearable sweat analysis devices for monitoring of multiple health-related biomarkers with high sensitivity are highly desired for noninvasive and real-time monitoring of human health. Here, we report a flexible sweat analysis patch based on a silk fabric–derived carbon textile for simultaneous detection of six health-related biomarkers. The intrinsically N-doped graphitic structure and the hierarchical woven, porous structure provided the carbon textile good electrical conductivity, rich active sites, and good water wettability for efficient electron transmission and abundant access to reactants, enabling it to serve as an excellent working electrode in electrochemical sensors. On the basis of the above, we fabricated a multiplex sweat analysis patch that is capable of simultaneous detection of glucose, lactate, ascorbic acid, uric acid, Na+, and K+. The integration of selective detectors with signal collection and transmission components in this device has enabled us to realize real-time analysis of sweat.


2001 ◽  
Vol 73 (20) ◽  
pp. 4830-4835 ◽  
Author(s):  
Todd M. Allen ◽  
Travis M. Falconer ◽  
Mary E. Cisper ◽  
Anthony J. Borgerding ◽  
Charles W. Wilkerson

Sign in / Sign up

Export Citation Format

Share Document