scholarly journals Choosing an Animal Model for the Study of Functional Dyspepsia

2018 ◽  
Vol 2018 ◽  
pp. 1-13 ◽  
Author(s):  
Yang Ye ◽  
Xue-Rui Wang ◽  
Yang Zheng ◽  
Jing-Wen Yang ◽  
Na-Na Yang ◽  
...  

Functional dyspepsia (FD) is a common functional gastrointestinal disorder with pain or discomfort in the upper abdomen as the main characteristic. The prevalence of FD worldwide varies between 5% and 11%. This condition adversely affects attendance and productivity in the workplace. Emerging evidence is beginning to unravel the pathophysiologies of FD, and new data on treatment are helping to guide evidence-based practice. In order to better understand the pathophysiologies of FD and explore better treatment options, various kinds of animal models of FD have been developed. However, it is unclear which of these models most closely mimic the human disease. This review provides a comprehensive overview of the currently available animal models of FD in relationship to the clinical features of the disease. The rationales, methods, merits, and disadvantages for modelling specific symptoms of FD are discussed in detail.

2015 ◽  
Vol 223 (3) ◽  
pp. 157-164 ◽  
Author(s):  
Georg Juckel

Abstract. Inflammational-immunological processes within the pathophysiology of schizophrenia seem to play an important role. Early signals of neurobiological changes in the embryonal phase of brain in later patients with schizophrenia might lead to activation of the immunological system, for example, of cytokines and microglial cells. Microglia then induces – via the neurotoxic activities of these cells as an overreaction – a rarification of synaptic connections in frontal and temporal brain regions, that is, reduction of the neuropil. Promising inflammational animal models for schizophrenia with high validity can be used today to mimic behavioral as well as neurobiological findings in patients, for example, the well-known neurochemical alterations of dopaminergic, glutamatergic, serotonergic, and other neurotransmitter systems. Also the microglial activation can be modeled well within one of this models, that is, the inflammational PolyI:C animal model of schizophrenia, showing a time peak in late adolescence/early adulthood. The exact mechanism, by which activated microglia cells then triggers further neurodegeneration, must now be investigated in broader detail. Thus, these animal models can be used to understand the pathophysiology of schizophrenia better especially concerning the interaction of immune activation, inflammation, and neurodegeneration. This could also lead to the development of anti-inflammational treatment options and of preventive interventions.


2018 ◽  
Vol 19 (12) ◽  
pp. 4035 ◽  
Author(s):  
Mirim Jin ◽  
Miwon Son

Functional dyspepsia (FD) is the most common functional gastrointestinal disorder (FGID). FD is characterized by bothersome symptoms such as postprandial fullness, early satiety, and epigastric pain or burning sensations in the upper abdomen. The complexity and heterogeneity of FD pathophysiology, which involves multiple mechanisms, make both treatment and new drug development for FD difficult. Current medicines for FD targeting a single pathway have failed to show satisfactory efficacy and safety. On the other hand, multicomponent herbal medicines that act on multiple targets may be a promising alternative treatment for FD. DA-9701 (Motilitone), a botanical drug consisting of Corydalis Tuber and Pharbitidis Semen, has been prescribed for FD since it was launched in Korea in 2011. It has multiple mechanisms of action such as prokinetic effects, fundus relaxation, and visceral analgesia, which are mediated by dopamine D2 and several serotonin receptors involved in gastrointestinal (GI) functions. In clinical studies, DA-9701 has been found to be beneficial for improvement of FD symptoms and GI functions in FD patients, while showing better safety compared to that associated with conventional medicines. In this review, we provide updated information on the pharmacological effects, safety, and clinical results of DA-9701 for the treatment of FGIDs.


2011 ◽  
Vol 29 (1) ◽  
pp. 99-112
Author(s):  
Cynthia L. Renn ◽  
Susan G. Dorsey

Animal models are a critical component of biomedical and biobehavioral research and have contributed to the exponential expansion of our understanding of human disease. Now, as we move onward into the era of genetics and genomics research, the importance of animal models to the research process will become even more acute as we explore the significance of genetic differences that are found in the presence and absence of disease. The decision to use an animal model is not one that can be taken lightly; but, rather, requires careful thought and consideration. In this review, we will address (a) why we should consider using animal models, (b) several caveats that are associated with using animals for research, and (c) some of the common genetic tools that are used in animal research.


2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Jan Philipp Delling ◽  
Tobias M. Boeckers

Abstract Background Autism spectrum disorder (ASD) is a neurodevelopmental condition, which is characterized by clinical heterogeneity and high heritability. Core symptoms of ASD include deficits in social communication and interaction, as well as restricted, repetitive patterns of behavior, interests, or activities. Many genes have been identified that are associated with an increased risk for ASD. Proteins encoded by these ASD risk genes are often involved in processes related to fetal brain development, chromatin modification and regulation of gene expression in general, as well as the structural and functional integrity of synapses. Genes of the SH3 and multiple ankyrin repeat domains (SHANK) family encode crucial scaffolding proteins (SHANK1-3) of excitatory synapses and other macromolecular complexes. SHANK gene mutations are highly associated with ASD and more specifically the Phelan-McDermid syndrome (PMDS), which is caused by heterozygous 22q13.3-deletion resulting in SHANK3-haploinsufficiency, or by SHANK3 missense variants. SHANK3 deficiency and potential treatment options have been extensively studied in animal models, especially in mice, but also in rats and non-human primates. However, few of the proposed therapeutic strategies have translated into clinical practice yet. Main text This review summarizes the literature concerning SHANK3-deficient animal models. In particular, the structural, behavioral, and neurological abnormalities are described and compared, providing a broad and comprehensive overview. Additionally, the underlying pathophysiologies and possible treatments that have been investigated in these models are discussed and evaluated with respect to their effect on ASD- or PMDS-associated phenotypes. Conclusions Animal models of SHANK3 deficiency generated by various genetic strategies, which determine the composition of the residual SHANK3-isoforms and affected cell types, show phenotypes resembling ASD and PMDS. The phenotypic heterogeneity across multiple models and studies resembles the variation of clinical severity in human ASD and PMDS patients. Multiple therapeutic strategies have been proposed and tested in animal models, which might lead to translational implications for human patients with ASD and/or PMDS. Future studies should explore the effects of new therapeutic approaches that target genetic haploinsufficiency, like CRISPR-mediated activation of promotors.


ILAR Journal ◽  
2018 ◽  
Vol 59 (1) ◽  
pp. 40-50
Author(s):  
Sue E Knoblaugh ◽  
Tobias M Hohl ◽  
Krista M D La Perle

Abstract Over 60% of NIH extramural funding involves animal models, and approximately 80% to 90% of these are mouse models of human disease. It is critical to translational research that animal models are accurately characterized and validated as models of human disease. Pathology analysis, including histopathology, is essential to animal model studies by providing morphologic context to in vivo, molecular, and biochemical data; however, there are many considerations when incorporating pathology endpoints into an animal study. Mice, and in particular genetically modified models, present unique considerations because these modifications are affected by background strain genetics, husbandry, and experimental conditions. Comparative pathologists recognize normal pathobiology and unique phenotypes that animals, including genetically modified models, may present. Beyond pathology, comparative pathologists with research experience offer expertise in animal model development, experimental design, optimal specimen collection and handling, data interpretation, and reporting. Critical pathology considerations in the design and use of translational studies involving animals are discussed, with an emphasis on mouse models.


2001 ◽  
Vol 120 (5) ◽  
pp. A51-A52 ◽  
Author(s):  
B FISCHLER ◽  
J VANDENBERGHE ◽  
P PERSOONS ◽  
V GUCHT ◽  
D BROEKAERT ◽  
...  

2019 ◽  
Vol 25 (39) ◽  
pp. 5266-5278 ◽  
Author(s):  
Katia D'Ambrosio ◽  
Claudiu T. Supuran ◽  
Giuseppina De Simone

Protozoans belonging to Plasmodium, Leishmania and Trypanosoma genera provoke widespread parasitic diseases with few treatment options and many of the clinically used drugs experiencing an extensive drug resistance phenomenon. In the last several years, the metalloenzyme Carbonic Anhydrase (CA, EC 4.2.1.1) was cloned and characterized in the genome of these protozoa, with the aim to search for a new drug target for fighting malaria, leishmaniasis and Chagas disease. P. falciparum encodes for a CA (PfCA) belonging to a novel genetic family, the η-CA class, L. donovani chagasi for a β-CA (LdcCA), whereas T. cruzi genome contains an α-CA (TcCA). These three enzymes were characterized in detail and a number of in vitro potent and selective inhibitors belonging to the sulfonamide, thiol, dithiocarbamate and hydroxamate classes were discovered. Some of these inhibitors were also effective in cell cultures and animal models of protozoan infections, making them of considerable interest for the development of new antiprotozoan drugs with a novel mechanism of action.


Molecules ◽  
2021 ◽  
Vol 26 (14) ◽  
pp. 4221
Author(s):  
Aage Kristian Olsen Alstrup ◽  
Svend Borup Jensen ◽  
Ole Lerberg Nielsen ◽  
Lars Jødal ◽  
Pia Afzelius

The development of new and better radioactive tracers capable of detecting and characterizing osteomyelitis is an ongoing process, mainly because available tracers lack selectivity towards osteomyelitis. An integrated part of developing new tracers is the performance of in vivo tests using appropriate animal models. The available animal models for osteomyelitis are also far from ideal. Therefore, developing improved animal osteomyelitis models is as important as developing new radioactive tracers. We recently published a review on radioactive tracers. In this review, we only present and discuss osteomyelitis models. Three ethical aspects (3R) are essential when exposing experimental animals to infections. Thus, we should perform experiments in vitro rather than in vivo (Replacement), use as few animals as possible (Reduction), and impose as little pain on the animal as possible (Refinement). The gain for humans should by far exceed the disadvantages for the individual experimental animal. To this end, the translational value of animal experiments is crucial. We therefore need a robust and well-characterized animal model to evaluate new osteomyelitis tracers to be sure that unpredicted variation in the animal model does not lead to a misinterpretation of the tracer behavior. In this review, we focus on how the development of radioactive tracers relies heavily on the selection of a reliable animal model, and we base the discussions on our own experience with a porcine model.


Author(s):  
Nicholas Rebold ◽  
Dana Holger ◽  
Sara Alosaimy ◽  
Taylor Morrisette ◽  
Michael Rybak

Sign in / Sign up

Export Citation Format

Share Document