scholarly journals Receding Horizon Unbiased FIR Filters and Their Application to Sea Target Tracking

2018 ◽  
Vol 2018 ◽  
pp. 1-14
Author(s):  
Boris Skorohod

Finite impulse response (FIR) state estimation algorithms have been much discussed in literature lately. It is well known that they allow overcoming the Kalman filter divergence caused by modeling uncertainties. In this paper, new receding horizon unbiased FIR filters ignoring noise statistics for time-varying discrete state-space models are proposed. They have the following advantages. First, the proposed filters use only known means of state vector components at starting points of sliding windows. This allows us to take into account priory statistical information (on average) about specified movements of the system. Second, the iterative version of the filter has a Kalman-like form. Besides, its initialization does not include a training cycle in a batch form. Such filters may have a wide range of applications. In this paper, position and speed estimation of sea targets using angle measurements in azimuth and elevation is considered as an example.

2018 ◽  
Vol 2018 ◽  
pp. 1-11
Author(s):  
Xuefeng Fan ◽  
Fei Liu

The paper presents a decentralized fusion strategy based on the optimal unbiased finite impulse response (OUFIR) filter for discrete systems with correlated process and measurement noise. We extend OUFIR filter to apply in the model with control inputs. Taking it as local filters, cross covariance between any two is calculated; then it is expressed to the fast iterative form. Finally based on cross covariance, optimal weights are utilized to fuse local estimates and the overall outcome is obtained. The numerical examples show that the proposed filter exhibits better robustness against temporary modeling uncertainties than the fusion Kalman filter used commonly.


Electronics ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 553
Author(s):  
Daewon Chung ◽  
Woon Cho ◽  
Inyeob Jeong ◽  
Joonhyeon Jeon

Maximally-flat (MAXFLAT) finite impulse response (FIR) filters often face a problem of the cutoff-frequency error due to approximation of the desired frequency response by some closed-form solution. So far, there have been plenty of efforts to design such a filter with an arbitrarily specified cut off-frequency, but this filter type requires extensive computation and is not MAXFLAT anymore. Thus, a computationally efficient and effective design is needed for highly accurate filters with desired frequency characteristics. This paper describes a new method for designing cutoff-frequency-fixing FIR filters through the cutoff-frequency error compensation of MAXFLAT FIR filters. The proposed method provides a closed-form Chebyshev polynomial containing a cutoff-error compensation function, which can characterize the “cutoff-error-free” filters in terms of the degree of flatness for a given order of filter and cut off-frequency. This method also allows a computationally efficient and accurate formula to directly determine the degree of flatness, so that this filter type has a flat magnitude characteristic both in the passband and the stopband. The remarkable effectiveness of the proposed method in design efficiency and accuracy is clearly demonstrated through various examples, indicating that the cutoff-fixing filters exhibit amplitude distortion error of less than 10−14 and no cut off-frequency error. This new approach is shown to provide significant advantages over the previous works in design flexibility and accuracy.


2012 ◽  
Vol 9 (3) ◽  
pp. 325-342 ◽  
Author(s):  
Negovan Stamenkovic ◽  
Vladica Stojanovic

In this paper, the design of a Finite Impulse Response (FIR) filter based on the residue number system (RNS) is presented. We chose to implement it in the (RNS), because the RNS offers high speed and low power dissipation. This architecture is based on the single RNS multiplier-accumulator (MAC) unit. The three moduli set {2n+1,2n,2n-1}, which avoids 2n+1 modulus, is used to design FIR filter. A numerical example illustrates the principles of residue encoding, residue arithmetic, and residue decoding for FIR filters.


Author(s):  
David Rivas-Lalaleo ◽  
Sergio Muñoz-Romero ◽  
Monica Huerta ◽  
Víctor Bautista-Naranjo ◽  
Jorge García-Quintanilla ◽  
...  

1995 ◽  
Vol 38 (1) ◽  
pp. 211-221 ◽  
Author(s):  
Ronald A. van Buuren ◽  
Joost M. Festen ◽  
Reinier Plomp

The long-term average frequency spectrum of speech was modified to 25 target frequency spectra in order to determine the effect of each of these spectra on speech intelligibility in noise and on sound quality. Speech intelligibility was evaluated using the test as developed by Plomp and Mimpen (1979), whereas sound quality was examined through judgments of loudness, sharpness, clearness, and pleasantness of speech fragments. Subjects had different degrees of sensorineural hearing loss and sloping audiograms, but not all of them were hearing aid users. The 25 frequency spectra were defined such that the entire dynamic range of each listener, from dB above threshold to 5 dB below UCL, was covered. Frequency shaping of the speech was carried out on-line by means of Finite Impulse Response (FIR) filters. The tests on speech reception in noise indicated that the Speech-Reception Thresholds (SRTs) did not differ significantly for the majority of spectra. Spectra with high levels, especially at low frequencies (probably causing significant upward spread of masking), and also those with steep negative slopes resulted in significantly higher SRTs. Sound quality judgments led to conclusions virtually identical to those from the SRT data: frequency spectra with an unacceptably low sound quality were in most of the cases significantly worse on the SRT test as well. Because the SRT did not vary significantly among the majority of frequency spectra, it was concluded that a wide range of spectra between the threshold and UCL levels of listeners with hearing losses is suitable for the presentation of speech energy. This is very useful in everyday listening, where the frequency spectrum of speech may vary considerably.


Author(s):  
MICHEL ALVES LACERDA ◽  
RODRIGO CAPOBIANCO GUIDO ◽  
LEONARDO MENDES DE SOUZA ◽  
PAULO RICARDO FRANCHI ZULATO ◽  
JUSSARA RIBEIRO ◽  
...  

This paper presents a study on wavelets and their characteristics for the specific purpose of serving as a feature extraction tool for speaker verification (SV), considering a Radial Basis Function (RBF) classifier, which is a particular type of Artificial Neural Network (ANN). Examining characteristics such as support-size, frequency and phase responses, amongst others, we show how Discrete Wavelet Transforms (DWTs), particularly the ones which derive from Finite Impulse Response (FIR) filters, can be used to extract important features from a speech signal which are useful for SV. Lastly, an SV algorithm based on the concepts presented is described.


2018 ◽  
Vol 2018 ◽  
pp. 1-7 ◽  
Author(s):  
Wei Xu ◽  
Anyu Li ◽  
Boya Shi ◽  
Jiaxiang Zhao

We focus on the design of finite impulse response (FIR) multiple notch filters. To reduce the computational complexity and hardware implementation complexity, a novel algorithm is developed based on the mixture of the tuning of notch frequencies and the sparsity of filter coefficients. The proposed design procedure can be carried out as follow: first, since sparse FIR filters have lower implementation complexity than full filters, a sparse linear phase FIR single notch filter with the given rejection bandwidth and passband attenuation is designed. Second, a tuning procedure is applied to the computed sparse filter to produce the desired sparse linear phase FIR multiple notch filter. When the notch frequencies are varied, the same tuning procedure can be employed to render the new multiple notch filter instead of designing the filter from scratch. The effectiveness of the proposed algorithm is demonstrated through three design examples.


2004 ◽  
Vol 13 (06) ◽  
pp. 1233-1249 ◽  
Author(s):  
WEI WANG ◽  
M. N. S. SWAMY ◽  
M. O. AHMAD

Field programmable gate array (FPGA)-based digital signal processing has been widely used in multimedia applications. By combining distributed arithmetic (DA) and residue number system (RNS) in such designs, efficient area, speed and power efficiency can be achieved. In this paper, we propose novel techniques for the design and FPGA implementation of DA-RNS finite impulse response (FIR) filters. By introducing a novel low-cost moduli set and its selection method, efficient modulo arithmetic units inside the subfilters are designed. Then, a new residue-to-binary conversion algorithm, a so-called modified DA Chinese remainder theorem, is derived to reduce the modulo operations and provide an efficient residue-to-binary converter suitable to FPGA implementation. Based on these proposed techniques, a seventh-order DA-RNS FIR filter is designed, implemented and tested by using Xilinx FPGA tools. The implementation results show that the proposed filter design consumes only 77% of the power that the existing filter12,13 requires, while maintaining the same speed (throughput).


Sign in / Sign up

Export Citation Format

Share Document