scholarly journals Congenital Glaucoma: a Novel Ocular Manifestation of Hajdu-Cheney Syndrome

2018 ◽  
Vol 2018 ◽  
pp. 1-4
Author(s):  
L. Swan ◽  
G. Gole ◽  
V. Sabesan ◽  
J. Cardinal ◽  
D. Coman

Hajdu-Cheney Syndrome (HSC) is a rare multisystem disease in which the phenotype involves acro-osteolysis, severe osteoporosis, short stature, wormian bones, facial dysmorphism, central neurological abnormalities, cardiovascular defects, and polycystic kidneys. We describe an infant with severe manifestations of HCS in whom congenital glaucoma was a significant early feature, which has not been reported to date. HCS cases reported to date have involved truncating mutations in exon 34 of NOTCH2 upstream the PEST domain that lead to the development of a truncated and stable NOTCH2 protein which upregluates notch signaling. We describe a hitherto undescribed missense mutation that is predicted to be pathogenic, with functional characterization remaining to be performed. Serpentine fibula-polycystic kidney syndrome (SFPKS) is allelic to HCS and commonly associated with missense NOTCH2 mutations. Our patient provides new ophthalmological manifestations of HCS and provides insight into the potential role of notch signaling in the anterior chamber development.

Molecules ◽  
2021 ◽  
Vol 26 (3) ◽  
pp. 767
Author(s):  
Kamar Hamade ◽  
Ophélie Fliniaux ◽  
Jean-Xavier Fontaine ◽  
Roland Molinié ◽  
Elvis Otogo Nnang ◽  
...  

Lignans, phenolic plant secondary metabolites, are derived from the phenylpropanoid biosynthetic pathway. Although, being investigated for their health benefits in terms of antioxidant, antitumor, anti-inflammatory and antiviral properties, the role of these molecules in plants remains incompletely elucidated; a potential role in stress response mechanisms has been, however, proposed. In this study, a non-targeted metabolomic analysis of the roots, stems, and leaves of wild-type and PLR1-RNAi transgenic flax, devoid of (+) secoisolariciresinol diglucoside ((+) SDG)—the main flaxseed lignan, was performed using 1H-NMR and LC-MS, in order to obtain further insight into the involvement of lignan in the response of plant to osmotic stress. Results showed that wild-type and lignan-deficient flax plants have different metabolic responses after being exposed to osmotic stress conditions, but they both showed the capacity to induce an adaptive response to osmotic stress. These findings suggest the indirect involvement of lignans in osmotic stress response.


2019 ◽  
Vol 20 (20) ◽  
pp. 5050 ◽  
Author(s):  
Magdalena Nalewajska ◽  
Klaudia Gurazda ◽  
Ewa Styczyńska-Kowalska ◽  
Małgorzata Marchelek-Myśliwiec ◽  
Andrzej Pawlik ◽  
...  

Glomerulonephritis (GN) represents a collection of kidney diseases characterized by inflammation within the renal glomeruli and small blood vessels. The lesions that occur in other nephron structures mainly result from the harmful effects of proteinuria. In recent years, an emphasis has been placed on gaining a better insight into the pathogenesis and pathophysiology of GN in order to facilitate diagnoses and provide efficient and targeted treatments of the disease. Owing to the advanced molecular and genetic diagnostic techniques available today, researchers have been able to elucidate that most cases of GN are determined by genetic risk factors and are associated with the abnormal functioning of the immune system (the immunologically mediated forms of GN). MicroRNAs (miRNAs) are a group of single-stranded, non-coding molecules, approximately 20 nucleotides in length, that act as regulatory factors in the post-transcriptional processes capable of regulating the expression of multiple genes. In this paper we present the available research aiming to determine effects of miRNAs on the development and progression of GN and discuss the potential role of miRNAs as new diagnostic markers and therapeutic targets.


RSC Advances ◽  
2016 ◽  
Vol 6 (86) ◽  
pp. 82644-82647 ◽  
Author(s):  
Kwon Joo Yeo ◽  
Jun-Goo Jee ◽  
Jin-Wan Park ◽  
Yu-Jin Lee ◽  
Kyoung-Seok Ryu ◽  
...  

The 50KRSIK54 motif is the main interaction site of hAng for heparin and DNA binding, providing an insight into the potential role of the motif for the internalization and DNA binding of hAng, which is essential for the regulation of angiogenesis.


2015 ◽  
Vol 114 (6) ◽  
pp. 3033-3035
Author(s):  
Ramina Adam ◽  
Silvia Isabella ◽  
Jason L. Chan

Beta oscillations are associated with motor function and are thought to play a role in movement impairment. In a recent magnetoencephalography (MEG) study, Rossiter et al. ( J Neurophysiol 112: 2053–2058, 2014) found a disruption in the modulation of movement-related beta oscillations in stroke patients that correlated with motor impairment. We discuss how beta oscillatory measures characterize motor impairment, the implications of stroke variability, and the potential role of GABA in modulating oscillations following stroke and during stroke recovery.


2014 ◽  
Author(s):  
Juanjuan Zhao ◽  
Yongju Li ◽  
Yan Hu ◽  
Chao Chen ◽  
Ya Zhou ◽  
...  

Backgroud: CCR6+ CD4+ regulatory T cells (CCR6+Tregs), a distinct Tregs subset, played an important role in various immune diseases. Recent evidence showed that microRNAs (miRNAs) are vital regulators in the function of immune cells. However, the potential role of miRNAs in the function of CCR6+Tregs remains largely unknown. In this study, we detected the expression profile of miRNAs in CCR6+ Tregs. Materials and Methods: The expression profile of miRNAs as well as genes in CCR6+Tregs or CCR6-Tregs from Balb/c mice were detected by microarray. The signaling pathways were analyzed using Keggs pathway library. Results: We found that there were 58 miRNAs significantly upregulated and 62 downregulated up to 2 fold in CCR6+Tregs compared with CCR6-Tregs. Moreover, 1391 genes were observed with 3 fold change and 20 signaling pathways were enriched using Keggs pathway library. Conclusion: The present data firstly showed CCR6+Tregs expressed specific miRNAs pattern, which provide an insight into the role of miRNAs in the biological function of distinct Tregs subsets.


2014 ◽  
Author(s):  
Juanjuan Zhao ◽  
Yongju Li ◽  
Yan Hu ◽  
Chao Chen ◽  
Ya Zhou ◽  
...  

Backgroud: CCR6+ CD4+ regulatory T cells (CCR6+Tregs), a distinct Tregs subset, played an important role in various immune diseases. Recent evidence showed that microRNAs (miRNAs) are vital regulators in the function of immune cells. However, the potential role of miRNAs in the function of CCR6+Tregs remains largely unknown. In this study, we detected the expression profile of miRNAs in CCR6+ Tregs. Materials and Methods: The expression profile of miRNAs as well as genes in CCR6+Tregs or CCR6-Tregs from Balb/c mice were detected by microarray. The signaling pathways were analyzed using Keggs pathway library. Results: We found that there were 58 miRNAs significantly upregulated and 62 downregulated up to 2 fold in CCR6+Tregs compared with CCR6-Tregs. Moreover, 1391 genes were observed with 3 fold change and 20 signaling pathways were enriched using Keggs pathway library. Conclusion: The present data firstly showed CCR6+Tregs expressed specific miRNAs pattern, which provide an insight into the role of miRNAs in the biological function of distinct Tregs subsets.


2018 ◽  
Vol 72 ◽  
pp. 587-593
Author(s):  
Przemysław Zakowicz ◽  
Radosław Kujawski ◽  
Przemysław Mikołajczak

Alcoholism is a severe social and medical problem. Inadequate ethanol (EtOH) consumption results in acute and chronic conditions, which lead to many hospitalizations and generate considerable costs in healthcare. Alcoholism undoubtedly needs to be thoroughly described, especially in relation to the molecular mechanism of addiction. The current opinion about the pathogenesis of EtOH abuse is mainly based on the dopaminergic theory of addiction, connected with the impaired function of the dopaminergic transmission in the brain’s reward system. Moreover, recent evidence suggests that the potential role in alcohol activity is played also by glycinergic transmission, based inter alia on inhibitory glycine receptors (GlyRs) sensitive to this simplest amino acid. GlyRs are pentameric, ionotropic receptors from ligand-gated ion channel family and facilitate membrane permeability to chloride ions. The receptors are widely present in the human body and spread to the peripheral and central nervous system, where they are engaged in several processes, especially in the regulation of nociception, movement control and, possibly, also they are responsible for controlling the brain’s reward system involved in the pathogenesis of addiction. The last localization seems to be really important and consists of a new insight into the search for novel substances to prevent or cure the consequences of EtOH abuse. In this paper describes recently discovered and animal-tested ligands, which may be an interesting tool in the treatment of alcohol-related syndromes.


Genes ◽  
2021 ◽  
Vol 12 (7) ◽  
pp. 977
Author(s):  
Teresa Tavassoli ◽  
Christina Layton ◽  
Tess Levy ◽  
Mikaela Rowe ◽  
Julia George-Jones ◽  
...  

Phelan–McDermid syndrome (PMS) is one of the most common genetic forms of autism spectrum disorder (ASD). While sensory reactivity symptoms are widely reported in idiopathic ASD (iASD), few studies have examined sensory symptoms in PMS. The current study delineates the sensory reactivity phenotype and examines genotype–phenotype interactions in a large sample of children with PMS. Sensory reactivity was measured in a group of 52 children with PMS, 132 children with iASD, and 54 typically developing (TD) children using the Sensory Assessment for Neurodevelopmental Disorders (SAND). The SAND is a clinician-administered observation and corresponding caregiver interview that captures sensory symptoms based on the DSM-5 criteria for ASD. Children with PMS demonstrated significantly greater hyporeactivity symptoms and fewer hyperreactivity and seeking symptoms compared to children with iASD and TD controls. There were no differences between those with Class I deletions or sequence variants and those with larger Class II deletions, suggesting that haploinsufficiency of SHANK3 is the main driver of the sensory phenotype seen in PMS. The syndrome-specific sensory phenotype identified in this study is distinct from other monogenic forms of ASD and offers insight into the potential role of SHANK3 deficiency in sensory reactivity. Understanding sensory reactivity abnormalities in PMS, in the context of known glutamatergic dysregulation, may inform future clinical trials in the syndrome.


Sign in / Sign up

Export Citation Format

Share Document