scholarly journals Bisdemethoxycurcumin and Its Cyclized Pyrazole Analogue Differentially Disrupt Lipopolysaccharide Signalling in Human Monocyte-Derived Macrophages

2018 ◽  
Vol 2018 ◽  
pp. 1-13 ◽  
Author(s):  
Serena Tedesco ◽  
Morena Zusso ◽  
Laura Facci ◽  
Annalisa Trenti ◽  
Carlotta Boscaro ◽  
...  

Several studies suggest that curcumin and related compounds possess antioxidant and anti-inflammatory properties including modulation of lipopolysaccharide- (LPS-) mediated signalling in macrophage cell models. We here investigated the effects of curcumin and the two structurally unrelated analogues GG6 and GG9 in primary human blood-derived macrophages as well as the signalling pathways involved. Macrophages differentiated from peripheral blood monocytes for 7 days were activated with LPS or selective Toll-like receptor agonists for 24 h. The effects of test compounds on cytokine production and immunophenotypes evaluated as CD80+/CCR2+ and CD206+/CD163+ subsets were examined by ELISA and flow cytometry. Signalling pathways were probed by Western blot. Curcumin (2.5–10 μM) failed to suppress LPS-induced inflammatory responses. While GG6 reduced LPS-induced IκB-α degradation and showed a trend towards reduced interleukin-1β release, GG9 prevented the increase in proinflammatory CD80+ macrophage subset, downregulation of the anti-inflammatory CD206+/CD163+ subset, increase in p38 phosphorylation, and increase in cell-bound and secreted interleukin-1β stimulated by LPS, at least in part through signalling pathways not involving Toll-like receptor 4 and nuclear factor-κB. Thus, the curcumin analogue GG9 attenuated the LPS-induced inflammatory response in human blood-derived macrophages and may therefore represent an attractive chemical template for macrophage pharmacological targeting.

2015 ◽  
Vol 93 (4) ◽  
pp. 253-260 ◽  
Author(s):  
Yu Zhang ◽  
Ruhong Yan ◽  
Yae Hu

Oxymatrine (OMT) is the quinolizidine alkaloid extracted from the Chinese herb Sophora flavescens Ait. that has many pharmacological effects and is used for the treatment of some inflammatory diseases. In this study, RAW264.7 cells and THP-1 differentiated macrophages were pretreated with various concentrations of OMT at 2 h prior to treatment with lipopolysaccharide (LPS) (1.0 μg/mL) for different durations. We detected the anti-inflammatory effect of OMT in LPS-stimulated macrophages and investigated the molecular mechanism. We showed that OMT pretreatment significantly inhibited the LPS-induced secretion of nitric oxide (NO), interleukin-1 beta (IL-1β), and tumor necrosis factor-alpha (TNF-α) in supernatant, attenuated the mRNA levels of inducible nitric oxide synthase (iNOS), IL-1β, TNF-α, and Toll-like receptor 4 (TLR4), increased TLR4 and phosphorylation of inhibitor of kappa B-alpha (p-IBα) in cytosol, and decreased the nuclear level of nuclear factor-κB (NF-κB) p65 in macrophages. In conclusion, OMT exerts anti-inflammatory properties in LPS-stimulated macrophages by down-regulating the TLR4/NF-κB pathway.


2003 ◽  
Vol 23 (7) ◽  
pp. 2543-2555 ◽  
Author(s):  
Tapani Ronni ◽  
Vishal Agarwal ◽  
Michael Haykinson ◽  
Margaret E. Haberland ◽  
Genhong Cheng ◽  
...  

ABSTRACT Toll-like receptor 4 (TLR4) mediates the host response to lipopolysaccharide (LPS) by promoting the activation of pro- and anti-inflammatory cytokine genes. To activate each gene, numerous signal transduction pathways are required. The adaptor proteins MyD88 and TIRAP contribute to the activation of several and possibly all pathways via direct interactions with TLR4's Toll/interleukin-1 receptor (IL-1R) (TIR) domain. However, additional adaptors that are required for the activation of specific subsets of pathways may exist, which could contribute to the differential regulation of target genes. Furthermore, it remains unknown whether direct interactions that have been reported between TIR domains and other proteins are required for TLR4 signaling. To address these issues, we systematically mutated the TLR4 TIR domain in the context of a CD4/TLR4 fusion protein. Several exposed residues defining at least two structural surfaces were required in macrophages for activation of the proinflammatory IL-12 p40 and anti-inflammatory IL-10 promoters, as well as promoters dependent on individual transcription factors. Interestingly, the same residues were required by all promoters tested, suggesting that the signaling pathways diverge downstream of the adaptors. The mutant phenotypes provide a framework for future studies of TLR4 signaling, as the interaction supported by each critical surface residue will need to be defined.


2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Lu Wang ◽  
Yafei Rao ◽  
Xiali Liu ◽  
Liya Sun ◽  
Jiameng Gong ◽  
...  

Abstract Background Uncontrolled inflammation is a central problem for many respiratory diseases. The development of potent, targeted anti-inflammatory therapies to reduce lung inflammation and re-establish the homeostasis in the respiratory tract is still a challenge. Previously, we developed a unique anti-inflammatory nanodrug, P12 (made of hexapeptides and gold nanoparticles), which can attenuate Toll-like receptor-mediated inflammatory responses in macrophages. However, the effect of the administration route on its therapeutic efficacy and tissue distribution remained to be defined. Results In this study, we systematically compared the effects of three different administration routes [the intratracheal (i.t.), intravenous (i.v.) and intraperitoneal (i.p.)] on the therapeutic activity, biodistribution and pulmonary cell targeting features of P12. Using the LPS-induced ALI mouse model, we found that the local administration route via i.t. instillation was superior in reducing lung inflammation than the other two routes even treated with a lower concentration of P12. Further studies on nanoparticle biodistribution showed that the i.t. administration led to more accumulation of P12 in the lungs but less in the liver and other organs; however, the i.v. and i.p. administration resulted in more nanoparticle accumulation in the liver and lymph nodes, respectively, but less in the lungs. Such a lung favorable distribution was also determined by the unique surface chemistry of P12. Furthermore, the inflammatory condition in the lung could decrease the accumulation of nanoparticles in the lung and liver, while increasing their distribution in the spleen and heart. Interestingly, the i.t. administration route helped the nanoparticles specifically target the lung macrophages, whereas the other two administration routes did not. Conclusion The i.t. administration is better for treating ALI using nanodevices as it enhances the bioavailability and efficacy of the nanodrugs in the target cells of the lung and reduces the potential systematic side effects.


2006 ◽  
Vol 74 (3) ◽  
pp. 1828-1836 ◽  
Author(s):  
Shayla West-Barnette ◽  
Andrea Rockel ◽  
W. Edward Swords

ABSTRACT Nontypeable Haemophilus influenzae (NTHI) is a common respiratory commensal and opportunistic pathogen. NTHI is normally contained within the airways by host innate defenses that include recognition of bacterial endotoxins by Toll-like receptor 4 (TLR4). NTHI produces lipooligosaccharide (LOS) endotoxins which lack polymeric O side chains and which may contain host glycolipids. We recently showed that NTHI biofilms contain variants with sialylated LOS glycoforms that are essential to biofilm formation. In this study, we show that NTHI forms biofilms on epithelial cell layers. Confocal analysis revealed that sialylated variants were distributed throughout the biofilm, while variants expressing phosphorylcholine (PCho) were found within the biofilm. Consistent with this observation, PCho content of LOS purified from NTHI biofilms was increased compared to LOS from planktonic cultures. Hypothesizing that the observed changes in endotoxin composition could affect bioactivity, we compared inflammatory responses to NTHI LOS purified from biofilm and planktonic cultures. Our results show that endotoxins from biofilms induced weaker host innate responses. While we observed a minimal effect of sialylation on LOS bioactivity, there was a significant decrease in bioactivity associated with PCho substitutions. We thus conclude that biofilm growth increases the proportion of PCho+ variants in an NTHI population, resulting in a net decrease in LOS bioactivity. Thus, in addition to their well-documented resistance phenotypes, our data show that biofilm communities of NTHI bacteria contain variants that evoke less potent host responses.


Blood ◽  
1985 ◽  
Vol 66 (2) ◽  
pp. 298-301
Author(s):  
JA Elias ◽  
P Chien ◽  
KM Gustilo ◽  
AD Schreiber

Interleukin-1 (IL-1) is an important immunoregulatory peptide produced by monocytes and macrophages. Because mononuclear phagocytes are morphologically and functionally heterogeneous, we examined whether they differ in their ability to elaborate IL-1. We used discontinuous Percoll gradients to obtain five density-defined human blood monocyte subpopulations. Unfractionated monocytes and their subsets were compared for their ability to stimulate thymocyte proliferation. Supernatants obtained from the denser monocytes consistently contained more IL-1 activity than did supernatants from the less dense cells. This difference in IL-1 activity was the result of differences in IL-1 elaboration, not the selective production of an inhibitor of IL-1- induced thymocyte proliferation. These data demonstrate that density- defined human monocyte subpopulations differ in their capacity to elaborate IL-1.


2018 ◽  
Vol 315 (2) ◽  
pp. G231-G240 ◽  
Author(s):  
Thomas K. Hoang ◽  
Baokun He ◽  
Ting Wang ◽  
Dat Q. Tran ◽  
J. Marc Rhoads ◽  
...  

Lactobacillus reuteri DSM 17938 (LR 17938) has been shown to reduce the incidence and severity of necrotizing enterocolitis (NEC). It is unclear if preventing NEC by LR 17938 is mediated by Toll-like receptor 2 (TLR2), which is known to mediate proinflammatory responses to bacterial cell wall components. NEC was induced in newborn TLR2−/− or wild-type (WT) mice by the combination of gavage-feeding cow milk-based formula and exposure to hypoxia and cold stress. Treatment groups were administered formula supplemented with LR 17938 or placebo (deMan-Rogosa-Sharpe media). We observed that LR 17938 significantly reduced the incidence of NEC and reduced the percentage of activated effector CD4+T cells, while increasing Foxp3+ regulatory T cells in the intestinal mucosa of WT mice with NEC, but not in TLR2−/− mice. Dendritic cell (DC) activation by LR 17938 was mediated by TLR2. The percentage of tolerogenic DC in the intestine of WT mice was increased by LR 17938 treatment during NEC, a finding not observed in TLR2−/− mice. Furthermore, gut levels of proinflammatory cytokines IL-1β and IFN-γ were decreased after treatment with LR 17938 in WT mice but not in TLR2−/− mice. In conclusion, the combined in vivo and in vitro findings suggest that TLR2 receptors are involved in DC recognition and DC-priming of T cells to protect against NEC after oral administration of LR 17938. Our studies further clarify a major mechanism of probiotic LR 17938 action in preventing NEC by showing that neonatal immune modulation of LR 17938 is mediated by a mechanism requiring TLR2. NEW & NOTEWORTHY Lactobacillus reuteri DSM 17938 (LR 17938) has been shown to protect against necrotizing enterocolitis (NEC) in neonates and in neonatal animal models. The role of Toll-like receptor 2 (TLR2) as a sensor for gram-positive probiotics, activating downstream anti-inflammatory responses is unclear. Our current studies examined TLR2 −/− mice subjected to experimental NEC and demonstrated that the anti-inflammatory effects of LR 17938 are mediated via a mechanism requiring TLR2.


Blood ◽  
1985 ◽  
Vol 66 (2) ◽  
pp. 298-301 ◽  
Author(s):  
JA Elias ◽  
P Chien ◽  
KM Gustilo ◽  
AD Schreiber

Abstract Interleukin-1 (IL-1) is an important immunoregulatory peptide produced by monocytes and macrophages. Because mononuclear phagocytes are morphologically and functionally heterogeneous, we examined whether they differ in their ability to elaborate IL-1. We used discontinuous Percoll gradients to obtain five density-defined human blood monocyte subpopulations. Unfractionated monocytes and their subsets were compared for their ability to stimulate thymocyte proliferation. Supernatants obtained from the denser monocytes consistently contained more IL-1 activity than did supernatants from the less dense cells. This difference in IL-1 activity was the result of differences in IL-1 elaboration, not the selective production of an inhibitor of IL-1- induced thymocyte proliferation. These data demonstrate that density- defined human monocyte subpopulations differ in their capacity to elaborate IL-1.


Sign in / Sign up

Export Citation Format

Share Document