scholarly journals Early Growth Response 1 (Egr1) Is a Transcriptional Activator of NOX4 in Oxidative Stress of Diabetic Kidney Disease

2018 ◽  
Vol 2018 ◽  
pp. 1-10 ◽  
Author(s):  
Fang Hu ◽  
Meng Xue ◽  
Yang Li ◽  
Yi-Jie Jia ◽  
Zong-Ji Zheng ◽  
...  

Background. NADPH oxidase 4 (NOX4) plays a major role in renal oxidative stress of diabetic kidney disease (DKD). NOX4 was significantly increased in Egr1-expressing fibroblasts, but the relationship between Egr1 and NOX4 in DKD is unclear. Methods. For the evaluation of the potential relationship between Egr1 and NOX4, both were detected in HFD/STZ-induced mice and HK-2 cells treated with TGF-β1. Then, changes in NOX4 expression were detected in HK-2 cells and mice with overexpression and knockdown of Egr1. The direct relationship between Egr1 and NOX4 was explored via chromatin immunoprecipitation (ChIP). Results. We found increased levels of Egr1, NOX4, and α-SMA in the kidney cortices of diabetic mice and in TGF-β1-treated HK-2 cells. Overexpression or silencing of Egr1 in HK-2 cells could upregulate or downregulate NOX4 and α-SMA. ChIP assays revealed that TGF-β1 induced Egr1 to bind to the NOX4 promoter. Finally, Egr1 overexpression or knockdown in diabetic mice could upregulate or downregulate the expression of NOX4 and ROS, and α-SMA was also changed. Conclusion. Our study provides strong evidence that Egr1 is a transcriptional activator of NOX4 in oxidative stress of DKD. Egr1 contributes to DKD by enhancing EMT, in part by targeting NOX4.

2018 ◽  
Vol 29 (5) ◽  
pp. 1437-1448 ◽  
Author(s):  
Eoin P. Brennan ◽  
Muthukumar Mohan ◽  
Aaron McClelland ◽  
Christos Tikellis ◽  
Mark Ziemann ◽  
...  

Background The failure of spontaneous resolution underlies chronic inflammatory conditions, including microvascular complications of diabetes such as diabetic kidney disease. The identification of endogenously generated molecules that promote the physiologic resolution of inflammation suggests that these bioactions may have therapeutic potential in the context of chronic inflammation. Lipoxins (LXs) are lipid mediators that promote the resolution of inflammation.Methods We investigated the potential of LXA4 and a synthetic LX analog (Benzo-LXA4) as therapeutics in a murine model of diabetic kidney disease, ApoE−/− mice treated with streptozotocin.Results Intraperitoneal injection of LXs attenuated the development of diabetes-induced albuminuria, mesangial expansion, and collagen deposition. Notably, LXs administered 10 weeks after disease onset also attenuated established kidney disease, with evidence of preserved kidney function. Kidney transcriptome profiling defined a diabetic signature (725 genes; false discovery rate P≤0.05). Comparison of this murine gene signature with that of human diabetic kidney disease identified shared renal proinflammatory/profibrotic signals (TNF-α, IL-1β, NF-κB). In diabetic mice, we identified 20 and 51 transcripts regulated by LXA4 and Benzo-LXA4, respectively, and pathway analysis identified established (TGF-β1, PDGF, TNF-α, NF-κB) and novel (early growth response–1 [EGR-1]) networks activated in diabetes and regulated by LXs. In cultured human renal epithelial cells, treatment with LXs attenuated TNF-α–driven Egr-1 activation, and Egr-1 depletion prevented cellular responses to TGF-β1 and TNF-α.Conclusions These data demonstrate that LXs can reverse established diabetic complications and support a therapeutic paradigm to promote the resolution of inflammation.


Author(s):  
Shuyue Sheng ◽  
Meina Zou ◽  
Yanlin Yang ◽  
Meiping Guan ◽  
Shijing Ren ◽  
...  

AbstractDiabetic kidney disease (DKD) has become the most common cause of chronic kidney disease. Proteinuria is generally considered one of the clinical indicators of renal damage, and it is also closely related to the progression of DKD. Accumulating evidence indicates that proteinuria induces an upregulation of the expression levels of inflammatory cytokines and fibrosis markers in renal tubular epithelial cells, but the mechanism remains unclear. Previously, we showed that early growth response 1 (Egr1) played a key role in renal tubular injury. However, the upstream mechanism of Egr1 in the development of DKD is poorly understood. In this study, we found that albumin stimulation significantly increased the expression levels of Egr1, interleukin 6 (IL-6), tumor necrosis factor-α (TNF-α), and fibronectin (FN) in HK-2 cells but decreased miR-23a-3p levels. We then identified that miR-23a-3p targeted the 3′ untranslated region (UTR) of Egr1 and directly suppressed the expression of Egr1. Moreover, we found that overexpression and inhibition of miR-23a-3p in HK-2 cells attenuated and promoted the expression of IL-6, TNF-α, and FN, respectively. Additionally, Egr1 silencing reversed the inflammation and fibrosis caused by the miR-23a-3p inhibitor. Thus, we conclude that miR-23a-3p attenuates the development of DKD through Egr1, suggesting that targeting miR-23a-3p may be a novel therapeutic approach for DKD.


Antioxidants ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 1143
Author(s):  
Midori Sakashita ◽  
Tetsuhiro Tanaka ◽  
Reiko Inagi

Diabetic kidney disease (DKD) is a major cause of end-stage kidney disease, and it is crucial to understand the pathophysiology of DKD. The control of blood glucose levels by various glucose-lowering drugs, the common use of inhibitors of the renin–angiotensin system, and the aging of patients with diabetes can alter the disease course of DKD. Moreover, metabolic changes and associated atherosclerosis play a major role in the etiology of DKD. The pathophysiology of DKD is largely attributed to the disruption of various cellular stress responses due to metabolic changes, especially an increase in oxidative stress. Therefore, many antioxidants have been studied as therapeutic agents. Recently, it has been found that NRF2, a master regulator of oxidative stress, plays a major role in the pathogenesis of DKD and bardoxolone methyl, an activator of NRF2, has attracted attention as a drug that increases the estimated glomerular filtration rate in patients with DKD. This review outlines the altered stress responses of cellular organelles in DKD, their involvement in the pathogenesis of DKD, and discusses strategies for developing therapeutic agents, especially bardoxolone methyl.


Hypertension ◽  
2015 ◽  
Vol 66 (suppl_1) ◽  
Author(s):  
Jan Wysocki ◽  
Minghao Ye ◽  
Ahmed M Khattab ◽  
Yashpal Kanwar ◽  
Mark Osborn ◽  
...  

ACE2 is a monocarboxypeptidase that by converting AngII to Ang1-7 should down-regulate the renin-angiotensin system and therefore provide a means to therapeutically target diabetic kidney disease, a condition where the kidney RAS is overactive. Previous work indicated that soluble human recombinant (r)ACE2 administration for 4 weeks attenuated kidney injury in diabetic Akita mice. Whether such effect of rACE2 can be confirmed and attributed to augmented ACE2 activity is uncertain because chronic use of human rACE2 in mice induces immunogenicity and the development of antibodies that neutralize serum ACE2 activity. To examine the effect of chronic amplification of circulating ACE2 on kidney injury caused by STZ-induced diabetes and to circumvent the immunogenicity arising from xenogeneic ACE2, ACE2 of mouse origin was administered to mice using either daily i.p. injections (1 mg/kg) of mrACE2 for 4 weeks or after 20 weeks of ACE2 mini-circle (MC) (10-30ug/mouse) administration. MC provides a form of gene delivery that is resistant to gene silencing and, in addition, greatly optimizes long-term in vivo overexpression of proteins of interest. ACE2MC resulted in a profound and sustained increase in serum ACE2 activity (2.4±0.3 vs. 497±135 RFU/ul/hr, p<0.01) but kidney ACE2 activity was unchanged (17.4±1.3 vs. 19.0±0.8 RFU/ug prot/hr). mACE2-treated mice injected with STZ developed diabetes similar to sham mice injected with STZ. Systolic BP was not different between non-diabetic mice, sham STZ-mice, and STZ-mice receiving mACE2 by either i.p. mrACE2 or ACE2MC. Urinary albumin was similarly increased in sham STZ-mice and in STZ-mice receiving mACE2. Glomerular mesangial score and glomerular cellularity were both increased to a similar extent in sham STZ-mice and in STZ-mice with mACE2 administration, as compared to non-diabetic controls. In conclusion, profound and long-term augmentation of ACE2 activity confined to the circulation is not sufficient to attenuate glomerular pathology and albuminuria in STZ-induced diabetic kidney disease probably because of lack of kidney delivery of ACE2. Strategies to achieve over-expression of ACE2 at the kidney level are needed to demonstrate a beneficial effect of this enzyme on diabetic kidney disease.


2018 ◽  
Vol 43 (2) ◽  
pp. e12727 ◽  
Author(s):  
Xiaohong Wang ◽  
Aiqiong Qin ◽  
Fang Xiao ◽  
Opeyemi J. Olatunji ◽  
Shuyuan Zhang ◽  
...  

2017 ◽  
Vol 2017 ◽  
pp. 1-10 ◽  
Author(s):  
Yu Ning Liu ◽  
Jingwei Zhou ◽  
Tingting Li ◽  
Jing Wu ◽  
Shu Hua Xie ◽  
...  

The hypoalbuminuric effect of sulodexide (SDX) on diabetic kidney disease (DKD) was suggested by some clinical trials but was denied by the Collaborative Study Group. In this study, the diabetic rats were treated with SDX either from week 0 to 24 or from week 13 to 24. We found that 24-week treatment significantly decreased the urinary protein and HAVCR1 excretion, inhibited the interstitial expansion, and downregulated the renal cell apoptosis and interstitial fibrosis. Renoprotection was also associated with a reduction in renocortical/urinary oxidative activity and the normalization of renal klotho expression. However, all of these actions were not observed when SDX was administered only at the late stage of diabetic nephropathy (from week 13 to 24). In vitro, advanced glycation end products (AGEs) dose-dependently enhanced the oxidative activity but lowered the klotho expression in cultured proximal tubule epithelial cells (PTECs). Also, H2O2 could downregulate the expression of klotho in a dose-dependent manner. However, overexpression of klotho reduced the HAVCR1 production and the cellular apoptosis level induced by AGEs or H2O2. Our study suggests that SDX may prevent the progression of DKD at the early stage by upregulating renal klotho expression, which inhibits the tubulointerstitial injury induced by oxidative stress.


Diabetes ◽  
2021 ◽  
pp. db210316
Author(s):  
Nehaben A. Gujarati ◽  
Alexandra R. Leonardo ◽  
Jessica M. Vasquez ◽  
Yiqing Guo ◽  
Bismark O. Frimpong ◽  
...  

2021 ◽  
Vol 22 (19) ◽  
pp. 10822
Author(s):  
Agata Winiarska ◽  
Monika Knysak ◽  
Katarzyna Nabrdalik ◽  
Janusz Gumprecht ◽  
Tomasz Stompór

The incidence of type 2 diabetes (T2D) has been increasing worldwide, and diabetic kidney disease (DKD) remains one of the leading long-term complications of T2D. Several lines of evidence indicate that glucose-lowering agents prevent the onset and progression of DKD in its early stages but are of limited efficacy in later stages of DKD. However, sodium-glucose cotransporter-2 inhibitors (SGLT2i) and glucagon-like peptide-1 receptor (GLP-1R) antagonists were shown to exert nephroprotective effects in patients with established DKD, i.e., those who had a reduced glomerular filtration rate. These effects cannot be solely attributed to the improved metabolic control of diabetes. In our review, we attempted to discuss the interactions of both groups of agents with inflammation and oxidative stress—the key pathways contributing to organ damage in the course of diabetes. SGLT2i and GLP-1R antagonists attenuate inflammation and oxidative stress in experimental in vitro and in vivo models of DKD in several ways. In addition, we have described experiments showing the same protective mechanisms as found in DKD in non-diabetic kidney injury models as well as in some tissues and organs other than the kidney. The interaction between both drug groups, inflammation and oxidative stress appears to have a universal mechanism of organ protection in diabetes and other diseases.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
José María Mora-Gutiérrez ◽  
José Antonio Rodríguez ◽  
María A. Fernández-Seara ◽  
Josune Orbe ◽  
Francisco Javier Escalada ◽  
...  

AbstractMatrix metalloproteinases have been implicated in diabetic microvascular complications. However, little is known about the pathophysiological links between MMP-10 and the renin-angiotensin system (RAS) in diabetic kidney disease (DKD). We tested the hypothesis that MMP-10 may be up-regulated in early stage DKD, and could be down-regulated by angiotensin II receptor blockade (telmisartan). Serum MMP-10 and TIMP-1 levels were measured in 268 type 2 diabetic subjects and 111 controls. Furthermore, histological and molecular analyses were performed to evaluate the renal expression of Mmp10 and Timp1 in a murine model of early type 2 DKD (db/db) after telmisartan treatment. MMP-10 (473 ± 274 pg/ml vs. 332 ± 151; p = 0.02) and TIMP-1 (573 ± 296 ng/ml vs. 375 ± 317; p < 0.001) levels were significantly increased in diabetic patients as compared to controls. An early increase in MMP-10 and TIMP-1 was observed and a further progressive elevation was found as DKD progressed to end-stage renal disease. Diabetic mice had 4-fold greater glomerular Mmp10 expression and significant albuminuria compared to wild-type, which was prevented by telmisartan. MMP-10 and TIMP-1 are increased from the early stages of type 2 diabetes. Prevention of MMP-10 upregulation observed in diabetic mice could be another protective mechanism of RAS blockade in DKD.


Sign in / Sign up

Export Citation Format

Share Document