akita mice
Recently Published Documents


TOTAL DOCUMENTS

95
(FIVE YEARS 32)

H-INDEX

21
(FIVE YEARS 5)

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Katarina Bojkovic ◽  
Jennifer Leigh Rodgers ◽  
Riddhi Vichare ◽  
Asmita Nandi ◽  
Hussein Mansour ◽  
...  

AbstractOxygen supplementation, although a cornerstone of emergency and cardiovascular medicine, often results in hyperoxia, a condition characterized by excessive tissue oxygen which results in adverse cardiac remodeling and subsequent injurious effects to physiological function. Cardiac remodeling is further influenced by various risk factors, including pre-existing conditions and sex. Thus, the purpose of this experiment was to investigate cardiac remodeling in Type I Diabetic (Akita) mice subjected to hyperoxic treatment. Overall, we demonstrated that Akita mice experience distinct challenges from wild type (WT) mice. Specifically, Akita males at both normoxia and hyperoxia showed significant decreases in body and heart weights, prolonged PR, QRS, and QTc intervals, and reduced %EF and %FS at normoxia compared to WT controls. Moreover, Akita males largely resemble female mice (both WT and Akita) with regards to the parameters studied. Finally, statistical analysis revealed hyperoxia to have the greatest influence on cardiac pathophysiology, followed by sex, and finally genotype. Taken together, our data suggest that Type I diabetic patients may have distinct cardiac pathophysiology under hyperoxia compared to uncomplicated patients, with males being at high risk. These findings can be used to enhance provision of care in ICU patients with Type I diabetes as a comorbid condition.


2021 ◽  
Vol 12 ◽  
Author(s):  
Oana Herlea-Pana ◽  
Venkateswararao Eeda ◽  
Ram Babu Undi ◽  
Hui-Ying Lim ◽  
Weidong Wang

β-cell ER stress plays an important role in β-cell dysfunction and death during the pathogenesis of diabetes. Proinsulin misfolding is regarded as one of the primary initiating factors of ER stress and unfolded protein response (UPR) activation in β-cells. Here, we found that the ER stress sensor inositol-requiring enzyme 1α (IRE1α) was activated in the Akita mice, a mouse model of mutant insulin gene-induced diabetes of youth (MIDY), a monogenic diabetes. Normalization of IRE1α RNase hyperactivity by pharmacological inhibitors significantly ameliorated the hyperglycemic conditions and increased serum insulin levels in Akita mice. These benefits were accompanied by a concomitant protection of functional β-cell mass, as shown by the suppression of β-cell apoptosis, increase in mature insulin production and reduction of proinsulin level. At the molecular level, we observed that the expression of genes associated with β-cell identity and function was significantly up-regulated and ER stress and its associated inflammation and oxidative stress were suppressed in islets from Akita mice treated with IRE1α RNase inhibitors. This study provides the evidence of the in vivo efficacy of IRE1α RNase inhibitors in Akita mice, pointing to the possibility of targeting IRE1α RNase as a therapeutic direction for the treatment of diabetes.


2021 ◽  
Author(s):  
Jinghe Li ◽  
Ryota Inoue ◽  
Yu Togashi ◽  
Tomoko Okuyama ◽  
Aoi Satoh ◽  
...  

The effects of imeglimin, a novel anti-diabetes agent, on β-cell function remain unclear. Here, we unveiled the impact of imeglimin on β-cell survival. Treatment with imeglimin augmented mitochondrial function, enhanced insulin secretion, promoted β-cell proliferation, and improved β-cell survival in mouse islets. Imeglimin upregulated the expression of endoplasmic reticulum (ER)-related molecules including <i>Chop (Ddit3),</i> <i>Gadd34</i> (<i>Ppp1r15a</i>), <i>Atf3</i>, and <i>Sdf2l1</i>, and decreased eIF2α phosphorylation, after treatment with thapsigargin, and restored global protein synthesis in β-cells under ER stress. Imeglimin failed to protect ER stress-induced β-cell apoptosis in CHOP-deficient islets or in the presence of GADD34 inhibitor. Treatment with imeglimin showed a significant decrease in the number of apoptotic β-cells and increased β-cell mass in Akita mice. Imeglimin also protected against β-cell apoptosis in both human islets and human pluripotent stem cell (<a>hPSC)-derived β-like cells</a>. <a>Taken together, imeglimin modulates ER homeostasis pathway, which results in the prevention of β-cell apoptosis both <i>in vitro</i> and <i>in vivo</i>.</a>


2021 ◽  
Author(s):  
Jinghe Li ◽  
Ryota Inoue ◽  
Yu Togashi ◽  
Tomoko Okuyama ◽  
Aoi Satoh ◽  
...  

The effects of imeglimin, a novel anti-diabetes agent, on β-cell function remain unclear. Here, we unveiled the impact of imeglimin on β-cell survival. Treatment with imeglimin augmented mitochondrial function, enhanced insulin secretion, promoted β-cell proliferation, and improved β-cell survival in mouse islets. Imeglimin upregulated the expression of endoplasmic reticulum (ER)-related molecules including <i>Chop (Ddit3),</i> <i>Gadd34</i> (<i>Ppp1r15a</i>), <i>Atf3</i>, and <i>Sdf2l1</i>, and decreased eIF2α phosphorylation, after treatment with thapsigargin, and restored global protein synthesis in β-cells under ER stress. Imeglimin failed to protect ER stress-induced β-cell apoptosis in CHOP-deficient islets or in the presence of GADD34 inhibitor. Treatment with imeglimin showed a significant decrease in the number of apoptotic β-cells and increased β-cell mass in Akita mice. Imeglimin also protected against β-cell apoptosis in both human islets and human pluripotent stem cell (<a>hPSC)-derived β-like cells</a>. <a>Taken together, imeglimin modulates ER homeostasis pathway, which results in the prevention of β-cell apoptosis both <i>in vitro</i> and <i>in vivo</i>.</a>


2021 ◽  
Author(s):  
Katarina Bojkovic ◽  
Jennifer Rodgers ◽  
Riddhi Vichare ◽  
Asmita Nandi ◽  
Hussein Mansour ◽  
...  

Abstract Oxygen supplementation, although a cornerstone of emergency and cardiovascular medicine, often results in hyperoxia, a condition characterized by excessive tissue oxygen which results in adverse cardiac remodeling and subsequent injurious effects to physiological function. Cardiac remodeling is further influenced by various risk factors, including pre-existing conditions and sex. Thus, the purpose of this experiment was to investigate cardiac remodeling in Type I Diabetic (Akita) mice subjected to hyperoxic treatment. Overall, we demonstrated that Akita mice experience distinct challenges from wild type (WT) mice. Specifically, Akita males at both normoxia and hyperoxia showed significant decreases in body and heart weights, prolonged PR, QRS, and QTc intervals, and reduced %EF and %FS at normoxia compared to WT controls. Moreover, Akita males largely resemble female mice (both WT and Akita) with regards to the parameters studied. Finally, statistical analysis revealed hyperoxia to have the greatest influence on cardiac pathophysiology, followed by sex, and finally genotype. Taken together, our data suggest that Type I diabetic patients may have distinct cardiac pathophysiology under hyperoxia compared to uncomplicated patients, with males being at high risk. These findings can be used to enhance provision of care in ICU patients with Type I diabetes as a comorbid condition.


2021 ◽  
Author(s):  
Katarina Bojkovic ◽  
Jennifer Leigh Rodgers ◽  
Riddhi Vichare ◽  
Asmita Nandi ◽  
Hussein Mansour ◽  
...  

Abstract BackgroundOxygen supplementation, although a cornerstone of emergency and cardiovascular medicine, often results in hyperoxia, a condition characterized by excessive tissue oxygen which results in adverse cardiac remodeling and subsequent injurious effects to physiological function. Cardiac remodeling is further influenced by various risk factors, including pre-existing conditions and sex. Thus, the purpose of this experiment was to investigate cardiac remodeling in Type I Diabetic (Akita) mice subjected to hyperoxic treatment. MethodsMale and female Akita and wild-type (WT) mice were divided into four groups based on gender and treatment, and were then subjected to either FiO2 > 90% (hyperoxia) for 72 h in an airtight chamber or normal air (normoxia). Physical, functional, and electrophysiological parameters were then evaluated. Finally, we employed correlational analysis and Multi-Way Analysis of Variance (ANOVA) which determined hyperoxia to have the greatest statistical influence on cardiac pathophysiology, followed by sex, and finally genotype.ResultsOverall, we demonstrated that Akita mice experience distinct challenges from wild type (WT) mice. Specifically, Akita males at both normoxia and hyperoxia showed significant decreases in body and heart weights, prolonged PR, QRS, and QTc intervals, and reduced %EF and %FS at normoxia compared to WT controls. Moreover, we found Akita males largely resemble female mice (both WT and Akita) with regards to the parameters studied. ConclusionsTaken together, our data suggest that Type I diabetic patients may have distinct cardiac pathophysiology under hyperoxia compared to uncomplicated patients, with males being at high risk. These findings can be used to enhance the provision of care in ICU patients with Type I diabetes as a comorbid condition.


Bone ◽  
2021 ◽  
Vol 147 ◽  
pp. 115906
Author(s):  
Pei Hu ◽  
Jennifer A. McKenzie ◽  
Evan G. Buettmann ◽  
Nicole Migotsky ◽  
Michael J. Gardner ◽  
...  

Nutrients ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 1457
Author(s):  
Sih Min Tan ◽  
Runa S. J. Lindblom ◽  
Mark Ziemann ◽  
Adrienne Laskowski ◽  
Cesare Granata ◽  
...  

Diabetic kidney disease (DKD) remains the number one cause of end-stage renal disease in the western world. In experimental diabetes, mitochondrial dysfunction in the kidney precedes the development of DKD. Reactive 1,2-dicarbonyl compounds, such as methylglyoxal, are generated from sugars both endogenously during diabetes and exogenously during food processing. Methylglyoxal is thought to impair the mitochondrial function and may contribute to the pathogenesis of DKD. Here, we sought to target methylglyoxal within the mitochondria using MitoGamide, a mitochondria-targeted dicarbonyl scavenger, in an experimental model of diabetes. Male 6-week-old heterozygous Akita mice (C57BL/6-Ins2-Akita/J) or wildtype littermates were randomized to receive MitoGamide (10 mg/kg/day) or a vehicle by oral gavage for 16 weeks. MitoGamide did not alter the blood glucose control or body composition. Akita mice exhibited hallmarks of DKD including albuminuria, hyperfiltration, glomerulosclerosis, and renal fibrosis, however, after 16 weeks of treatment, MitoGamide did not substantially improve the renal phenotype. Complex-I-linked mitochondrial respiration was increased in the kidney of Akita mice which was unaffected by MitoGamide. Exploratory studies using transcriptomics identified that MitoGamide induced changes to olfactory signaling, immune system, respiratory electron transport, and post-translational protein modification pathways. These findings indicate that targeting methylglyoxal within the mitochondria using MitoGamide is not a valid therapeutic approach for DKD and that other mitochondrial targets or processes upstream should be the focus of therapy.


2021 ◽  
pp. 100498
Author(s):  
Iliana López-Soldado ◽  
Joan J. Guinovart ◽  
Jordi Duran
Keyword(s):  

2020 ◽  
Vol 11 ◽  
Author(s):  
Yukihiro Fujita ◽  
Kuralay K. Atageldiyeva ◽  
Yasutaka Takeda ◽  
Tsuyoshi Yanagimachi ◽  
Yuichi Makino ◽  
...  

ObjectiveA low-carbohydrate diet (LC) can be beneficial to obese subjects with type2 diabetes mellitus (T2DM). Sodium-glucose cotransporter 2 inhibitor (SGLT2i) presents prompt glucose-lowering effects in subjects with T2DM. We investigated how LC and SGLT2i could similarly or differently influence on the metabolic changes, including glucose, lipid, and ketone metabolism in lean insulinopenic Akita mice. We also examined the impacts of the combination.MethodsMale Akita mice were fed ad libitum normal-carbohydrate diet (NC) as a control or low-carbohydrate diet (LC) as an intervention for 8 weeks with or without SGLT2i treatment. Body weight and casual bold glucose levels were monitored during the study, in addition to measuring TG, NEFA, and ketone levels. We quantified gene expressions involved in gluconeogenesis, lipid metabolism and ketogenesis in the liver and the kidney. We also investigated the immunostaining analysis of pancreatic islets to assess the effect of islet protection.ResultsBoth LC and SGLT2i treatment reduced chronic hyperglycemia. Moreover, the combination therapy additionally ameliorated glycemic levels and preserved the islet morphology in part. LC but not SGLT2i increased body weight accompanied by epididymal fat accumulation. In contrast, SGLT2i, not LC potentiated four-fold ketone production with higher ketogenic gene expression, in comparison with the non-treated Akita mice. Besides, the combination did not enhance further ketone production compared to the SGLT2i alone.ConclusionsOur results indicated that both LC and SGLT2i reduced chronic hyperglycemia, and the combination presented synergistic favorable effects concomitantly with amelioration of islet morphology, while the combination did not enhance further ketosis in Akita mice.


Sign in / Sign up

Export Citation Format

Share Document