scholarly journals Electromechanical Dynamic Behaviour and Start-Up Evaluation of Tumbling Ball Mills

2018 ◽  
Vol 2018 ◽  
pp. 1-13
Author(s):  
Weidong Lv ◽  
Guoqiang Wang ◽  
He Tian

This paper presents a dynamic simulator of the electromechanical coupling start-up of a ball mill. The electromechanical coupling model based on the dynamic model of the ball mill, the characteristic equation of the clutch, and the dynamic model of the induction motor is established. Comparison between the simulation results of angular speed, load torque and current obtained from the model, and the experimental results is conducted to validate the correctness of these simulation results. Results show that the simulation results of the electromechanical model are highly consistent with the experimental results. Two indexes are proposed for evaluation. Finally, a 4500 kW ball mill is used to analyse the start-up process with different operation parameters of the air clutch. The effect of the engagement time and the pressure of the air clutch on the torque, current, and shock extent is analysed. Moreover, the optimum inflation time is determined.

2020 ◽  
Vol 12 (10) ◽  
pp. 168781402096385
Author(s):  
Shuguang Zuo ◽  
Zhaoyang Feng ◽  
Jian Pan ◽  
Xudong Wu

For the problem of relatively severe lateral vibration found in the vertical electrodynamic shaker experiment, an electromechanical coupling dynamic model of the electrodynamic shaker considering low-frequency lateral vibration is proposed. The reason and mechanism of the lateral vibration is explained and analyzed through this model. To establish this model, an electromagnetic force model of overall conditions is firstly built by fitting force samples with neural network method. The force samples are obtained by orthogonal test of finite element simulation, in which five factors of the moving coil including current, vertical position, flipping eccentricity angle, radial translational eccentric direction and distance are considered. Secondly, a 7-dof dynamic model of the electrodynamic shaker is developed with the consideration of the lateral vibration of the moving system. To obtain the transfer function accurately, the stiffness and damping parameters are identified. Finally, an electromechanical dynamic model is established by coupling the force model and the 7-dof dynamic model, and it is verified by experiments. The coupling model proposed can be further used for the control and optimization of the electrodynamic shaker.


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Zhan Wang ◽  
Wenzhi He ◽  
Siyuan Du ◽  
Zhe Yuan

Unbalanced fault is the most common fault of high-speed motorized spindle, which is the main factor affecting the machining accuracy of high-speed spindle. Due to the unbalanced magnetic pull produced by the air gap eccentricity of the stator and rotor, the unbalanced vibration of the motorized spindle will be further aggravated. In order to explore the dynamic behavior and motion law of the unbalanced fault motorized spindle under the eccentric state, a dynamic model of the unbalanced fault of the high-speed motorized spindle considering the unbalanced magnetic pull was established. Taking the eccentric motorized spindle customized by the research group as the research object, the dynamic model is established, simulated, and analyzed, and the response change law of motorized spindle under the effect of different speed, unbalance, and air gap is obtained. The simulation results show that the unbalanced magnetic pull caused by static eccentricity will increase the unbalanced vibration of motorized spindle, and the unbalanced vibration will also increase with the increase of static eccentricity. The vibration caused by unbalanced magnetic pull does not increase with the increase of rotating speed. In frequency-domain analysis, when there is unbalanced magnetic pull, the peak appears at 0 Hz, and the amplitude of fundamental frequency vibration will increase with the increase of eccentricity. The experimental results show that the greater the eccentricity is, the greater the unbalance vibration of the motorized spindle is. The experimental results are consistent with the simulation results, which further verify the accuracy of the model. The research results lay a theoretical basis for fault analysis and diagnosis of coupling fault motorized spindle.


Author(s):  
Dawei Gu ◽  
Juqian Zhang ◽  
Bangchun Wen ◽  
Xueliang Zhang ◽  
Yunshan Liu

This paper aims at theoretically and experimentally investigating the controlled synchronization of four co-rotating coupled exciters in a vibrating system driven by induction motors. Using the Lagrange's equations, the motion equations of the vibrating system are derived. Combining the dynamic model of an induction motor with the dynamic model of a vibrating system, an electromechanical coupling model is developed. By virtue of the average method of modified small parameters and the Routh–Hurwitz principle, the self-synchronization criterion for four exciters and the stability criterion of synchronous states are obtained. Based on the numerical results, the stable inphase motion of four exciters fails to be implemented by means of self-synchronization, and as a result, the desired motion type of the vibrating system cannot be realized. Hence, the controlled synchronization is introduced into the vibrating system. Owing to the coupling characteristics of the vibrating system, the control challenge can be turned into a synchronization control problem between four exciters driven by induction motors. To perform the synchronized motion of zero phase differences between four exciters, sliding mode control algorithm and field-oriented control method on four induction motors are applied to develop the controlled synchronization scheme by adopting the master–slave control strategy. The stability of the closed loop system is proved by Lyapunov theorem. Experiments on a corresponding controlled synchronization bedstand are performed to examine the effectiveness of the developed controllers, including a comparison with self-synchronization method. Additionally, experimental results show the robustness of the proposed control scheme against the influence of parameter perturbations and external disturbances. The controlled synchronization method provides a novel approach to the development of vibrating machines.


1998 ◽  
Vol 120 (2) ◽  
pp. 337-342 ◽  
Author(s):  
I-S. Yun ◽  
K. F. Ehmann ◽  
W. R. D. Wilson

This paper presents the results of dynamic rolling experiments examining the variations in rolling force, back tension and roll gap in response to a sinusoidal dynamic component of various frequencies being superimposed on the roll gap or back tension. Comparisons between the experimental results and the corresponding simulation results are also presented to investigate the validity of the new dynamic model of the rolling process presented in Part 1 of this paper.


Author(s):  
Zixin Yin ◽  
Yuxing Peng ◽  
Tongqing Li ◽  
Zhencai Zhu ◽  
Zhangfa Yu ◽  
...  

The wear of lifter in ball mill directly affects the grinding efficiency and economic cost. However, how to evaluate the variation of wear process and predict the wear distribution of lifter is poorly developed. To this end, a laboratory-scale ball mill was used to evaluate the variation of wear process of the lifter in different milling conditions of mill speed, ball filling, grinding media size and shape. Besides, a wear prediction method was used to compare and validate the experimental results. The experimental results showed that the Abbott-Firestone curve can evaluate the lifter surface topography. The wear rate of the lifter specimen is increased first and then decreased with mill speed and grinding media size. Increasing ball filling will increase the wear rate, and the grinding media shape of ball has a maximum wear rate. The wear characteristics of the lifter specimen are consisting of impact pit, indentation, plastic deformation and scratch. Furthermore, the discrete element method (DEM) simulation showed that the wear behavior on the upper surface is higher than that on the side surface of the lifter. The DEM simulation with Archard wear model is an effective tool to investigate the wear distribution on the lifter, which is in good consistent with the wear behavior measured by the experiment.


2021 ◽  
pp. 004051752098812
Author(s):  
Xixi Qian ◽  
Yuanying Shen ◽  
Qiaoli Cao ◽  
Jun Ruan ◽  
Chongwen Yu

A simulation describing the fiber movement during the condensation was conducted, and the effect of the condensation in the carding machine was studied. The simulation results showed that the condensation has the blending and the evening effect on the condensed sliver, which can be explained by the fiber rearrangement. Moreover, the increasing web width and the decreasing condensing length can result in a more uniform sliver. Further, the evening effect of the web width on the web was verified by experiments. The simulation results were in general agreement with the experimental results.


Micromachines ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 69
Author(s):  
Yong Hua ◽  
Shuangyuan Wang ◽  
Bingchu Li ◽  
Guozhen Bai ◽  
Pengju Zhang

Micromirrors based on micro-electro-mechanical systems (MEMS) technology are widely employed in different areas, such as optical switching and medical scan imaging. As the key component of MEMS LiDAR, electromagnetic MEMS torsional micromirrors have the advantages of small size, a simple structure, and low energy consumption. However, MEMS micromirrors face severe disturbances due to vehicular vibrations in realistic use situations. The paper deals with the precise motion control of MEMS micromirrors, considering external vibration. A dynamic model of MEMS micromirrors, considering the coupling between vibration and torsion, is proposed. The coefficients in the dynamic model were identified using the experimental method. A feedforward sliding mode control method (FSMC) is proposed in this paper. By establishing the dynamic coupling model of electromagnetic MEMS torsional micromirrors, the proposed FSMC is evaluated considering external vibrations, and compared with conventional proportion-integral-derivative (PID) controls in terms of robustness and accuracy. The simulation experiment results indicate that the FSMC controller has certain advantages over a PID controller. This paper revealed the coupling dynamic of MEMS micromirrors, which could be used for a dynamic analysis and a control algorithm design for MEMS micromirrors.


2013 ◽  
Vol 846-847 ◽  
pp. 313-316 ◽  
Author(s):  
Xiao Yun Zhang

This paper presented a new method based on the Fuzzy self - adaptive PID for BLDCM. This method overcomes some defects of the traditional PID control. Such as lower control precision and worse anti - jamming performance. It dynamic model of BLDCM was built, and then design method for TS fuzzy PID model is given, At last, it compared simulation results of PID control method with TS Fuzzy PID control method. The results show that the TS Fuzzy PID control method has more excellent dynamic antistatic performances, as well as anti-jamming performance. The experiment shows that TS fuzzy PID control has the stronger adaptability robustness and transplant.


2014 ◽  
Vol 945-949 ◽  
pp. 1421-1425
Author(s):  
Xiu Qing Hao

Take typical parallel mechanism 3PTT as research subject, its inverse kinematic analysis solution was gotten. Dynamic model of the mechanism was established by Newton-Euler method, and the force and torque equations were derived. Dynamic simulation of 3PTT parallel mechanism was done by using ADAMS software, and simulation results have verified the correctness of the theoretical conclusions.


2013 ◽  
Vol 662 ◽  
pp. 586-590
Author(s):  
Gang Lu ◽  
Qing Song Yan ◽  
Bai Ping Lu ◽  
Shuai Xu ◽  
Kang Li

Four types of Super Typhoon drip emitter with trapezoidal channel were selected out for the investigation of the flow field of the channel, and the CFD (Computational Fluid Dynamics) method was applied to simulate the micro-field inside the channel. The simulation results showed that the emitter discharge of different turbulent model is 4%-14% bigger than that of the experimental results, the average discharge deviation of κ-ω and RSM model is 5, 4.5 respectively, but the solving efficiency of the κ-ω model is obviously higher than that of the RSM model.


Sign in / Sign up

Export Citation Format

Share Document