scholarly journals Optimal Disturbance Rejection with Zero Steady-State Error for Nonlinear Vehicle Suspension Systems under Persistent Road Disturbances

2018 ◽  
Vol 2018 ◽  
pp. 1-10 ◽  
Author(s):  
Xiao-Fang Zhong ◽  
Shi-Yuan Han ◽  
Xi-Xin Yang ◽  
Yuan-Lin Guan ◽  
Jin Zhou

The road disturbance rejection problem for vehicle active suspension involving the nonlinear characteristics is researched in this paper. A continuous-time state space of nonlinear vehicle active suspension is established first, in which the road disturbance is generated from the output of an introduced exosystem based on the ground displacement power spectral density. After that, based on the dynamics of road roughness and the internal model principle, a disturbance compensator with zero steady-state error is designed, which is related to the dynamic characteristics of road disturbance and independent of the control system model. By combining the vehicle active suspension system and the designed road disturbance compensator, an augmented system is obtained without explicit indication of road disturbance. Then by solving a series of decoupled nonlinear two-point-boundary-value problem and employing an iterative computing algorithm, an approximation optimal road disturbance rejection controller is obtained. Finally, the simulation results illustrate that the proposed approximation optimal road disturbance rejection controller can reduce the values of sprung mass acceleration, tire deflection, suspension deflection, and energy consumption and compensate the nonlinear behaviors of vehicle active suspension effectively.

2012 ◽  
Vol 226-228 ◽  
pp. 1614-1617 ◽  
Author(s):  
Ye Chen Qin ◽  
Ji Fu Guan ◽  
Liang Gu

To get the certain response of vehicle during the driving process, it’s necessary to measure the road irregularities. Existing method of gauging the roughness is based on physical measurements and the instrument is installed under the vehicle, which is expensive and will affect the vehicle dynamic responses. This paper shows an easier method to estimate the road roughness by measuring and calculating the power spectral density (PSD) of unsprung mass accelerations. This approach is possible due to the relationship between these two via a transfer function. By comparing the power spectral densities of estimated road and the standard classes, we can classify the current road classes easily. Besides, this paper also shows that it’s feasible to estimate the road profile by calculating the PSD of unsprung mass accelerations directly.


Author(s):  
Gokhan Kararsiz ◽  
Mahmut Paksoy ◽  
Muzaffer Metin ◽  
Halil Ibrahim Basturk

This article presents an application of the adaptive control method to semi-active suspension systems in the presence of unknown disturbance and parametric uncertainty. Due to the technical difficulties such as time delay and sensor noise, the road disturbance is assumed to be unmeasured. To overcome this problem, an observer is designed to estimate the disturbance. It is considered that the road profile consists of a finite number of the sum of sinusoidal signals with unknown amplitudes, phases and frequencies. After the parametrization of the observer, the adaptive control approach is employed to attenuate the effect of the road-induced vibrations using a magnetorheological damper. It is proved that the closed-loop system is stable, despite the adverse road conditions. Finally, the performance of the controller is illustrated with a hardware-in-the-loop simulation in which the system is subjected to sinusoidal and random profile road excitations. To demonstrate the benefits of the adaptive controller, the results are presented in comparison with a conventional proportional integral derivative (PID) controller.


2014 ◽  
Vol 592-594 ◽  
pp. 2165-2178 ◽  
Author(s):  
M.W. Trikande ◽  
Vinit V. Jagirdar ◽  
Muraleedharan Sujithkumar

Comparative performance of vehicle suspension system using passive, and semi-active control (on-off and continuous) has been carried out for a multi-axle vehicle under the source of road disturbance. Modelling and prediction for stochastic inputs from random road surface profiles has been carried out. The road surface is considered as a stationary stochastic process in time domain assuming constant vehicle speed. The road surface elevations as a function of time have been generated using IFFT. Semi active suspension gives better ride comfort with consumption of fraction of power required for active suspension. A mathematical model has been developed and control algorithm has been verified with the purpose/objective of reducing the unwanted sprung mass motions such as heave, pitch and roll. However, the cost and complexity of the system increases with implementation of semi-active control, especially in military domain. In addition to fully passive and fully semi-active a comparison has been made with partial semi-active control for a multi-axle vehicle to obviate the constraints. The time domain response of the suspension system using various control logics are obtained and compared. Simulations for different class of roads as defined in ISO: 8608 have been run and the ride comfort is evaluated and compared in terms of rms acceleration at CG in vertical direction (Z), which is the major contributor for ORV (Overall Ride Value) Measurement.


2016 ◽  
Vol 836 ◽  
pp. 31-36 ◽  
Author(s):  
Unggul Wasiwitono ◽  
Agus Sigit Pramono ◽  
I. Nyoman Sutantra ◽  
Yunarko Triwinarno

The variable stiffness and damping (VSVD) suspension system offers an interesting option to improve driver comfort in an energy efficient way. The aim of this study is to analyze the influence of the spring ratio on the VSVD. The realization of the VSVD is obtained by the application of variable damping with magnetorheological (MR) damper. In this study, the nonlinear damping force characteristic of the MR damper is modeled with the Bouc-Wen model and the road disturbance is modeled by a stationary random process with road displacement power spectral density. It is shown from simulation that VSVD has a potential benefit in improving performance of vehicle suspension.


2017 ◽  
Vol 40 (8) ◽  
pp. 2611-2621 ◽  
Author(s):  
Mingxing Cheng ◽  
Xiaohong Jiao

This paper presents a novel idea processing the complex non-linear dynamics of a magneto-rheological (MR) damper and the external road disturbance based on the linear extended state observer (LESO) technology, and further verifies its reasonability by application of linear active disturbance rejection control (LADRC) in the quarter-car non-linear semi-active suspension system. In order to optimize the body acceleration and dynamic tyre load to improve the ride comfort and road-handling ability, a modified active disturbance rejection control, the double linear active disturbance rejection control (DLADRC), is further proposed based on the idea of the hybrid skyhook–groundhook control strategy. LESO is used to estimate the total disturbance including the external road disturbance and the internal non-linear dynamic of the MR damper. For effectiveness validation of the proposed control scheme, comparison results with the existing linear quadratic regulation (LQR) control, hybrid skyhook–groundhook control and adaptive control strategies are presented for the same quarter-car semi-active suspension. It is shown from the simulation comparisons among these several control strategies that the semi-active suspension system with DLADRC has a better control performance on the ride comfort and road-handling ability corresponding to the body acceleration and dynamic tyre load.


2012 ◽  
Vol 229-231 ◽  
pp. 2253-2259
Author(s):  
Xiao Jiang Zhang ◽  
Xiu Chao Gao ◽  
Lei Yu

In order to improve the interference suppression capability for the muti-axle steering vehicle(MASV) and to reduce the design complexity of the controller , no steady-state error tracking control system was designed so that the contol system can meet the requirements of disturbance rejection and robust tracking. Using the no steady-state error tracking control strategy to the MASV, it can track reference signal perfectly. Its yaw angular velocity, sidesip angle and rolling angle are degraded at high vehicle speed. The stability and driving safety of the vehicle are improved. According to actual needs, the Parameter of the controller can be changed through the different characteristic value; The design and adjustment of the controller are simple amd easy.


Sign in / Sign up

Export Citation Format

Share Document