scholarly journals Modulation of Neuronal Activity on Intercalated Neurons of Amygdala Might Underlie Anxiolytic Activity of a Standardized Extract of Centella asiatica ECa233

2018 ◽  
Vol 2018 ◽  
pp. 1-8 ◽  
Author(s):  
Aree Wanasuntronwong ◽  
Oraphan Wanakhachornkrai ◽  
Penphimon Phongphanphanee ◽  
Tadashi Isa ◽  
Boonyong Tantisira ◽  
...  

GABAergic intercalated neurons of amygdala (ITCs) have recently been shown to be important in the suppression of fear-like behavior. Effects of ECa233 (a standardized extract of Centella asiatica), previously demonstrated anxiolytic activity, were then investigated on ITCs. Cluster of GABAergic neurons expressing fluorescence of GFP was identified in GAD67-GFP knock-in mice. We found that neurons of medial paracapsular ITC were GABAergic neurons exhibiting certain intrinsic electrophysiological properties similar to those demonstrated by ITC neurons at the same location in C57BL/6J mice. Therefore, we conducted experiments in both C57BL/6J mice and GAD67-GFP knock-in mice. Excitatory postsynaptic currents (EPSCs) were evoked by stimulation of the external capsule during the whole cell patch-clamp recordings from ITC neurons in brain slices. ECa233 was found to increase the EPSC peak amplitude in the ITC neurons by about 120%. The EPSCs in ITC neurons were completely abolished by the application of an AMPA receptor antagonist. Morphological assessment of the ITC neurons with biocytin demonstrated that most axons of the recorded neurons innervated the central nucleus of the amygdala (CeA). Therefore, it is highly likely that anxiolytic activity of ECa233 was mediated by increasing activation, via AMPA receptors, of excitatory synaptic input to the GABAergic ITC leading to depression of CeA neurons.

2020 ◽  
Author(s):  
Karen A. Bell ◽  
Rayne Delong ◽  
Priyodarshan Goswamee ◽  
A. Rory McQuiston

AbstractThe entorhinal cortex alvear pathway is a major excitatory input to hippocampal CA1, yet nothing is known about its physiological impact. We investigated the alvear pathway projection and innervation of neurons in CA1 using optogenetics and whole cell patch clamp methods in transgenic mouse brain slices. Using this approach, we show that the medial entorhinal cortical alvear inputs onto both CA1 pyramidal cells and stratum oriens interneurons were monosynaptic, had low release probability, and were mediated by AMPA receptors. Optogenetic theta burst stimulation was unable to elicit suprathreshold activation of CA1 pyramidal neurons but was capable of activating CA1 stratum oriens interneurons. CA1 stratum oriens interneuron subtypes were not equally affected. Higher burst action potential frequencies were observed in parvalbumin-expressing interneurons relative to vasoactive-intestinal peptide-expressing or a subset of oriens lacunosum-moleculare interneurons. Furthermore, alvear excitatory synaptic responses were observed in greater than 70% of PV and VIP interneurons and less than 20% of O-LM cells. Finally, greater than 50% of theta burst-driven inhibitory postsynaptic current amplitudes in CA1 PCs were inhibited by optogenetic suppression of PV interneurons. Therefore, our data suggest that the alvear pathway primarily affects hippocampal CA1 function through feedforward inhibition of select interneuron subtypes.


2020 ◽  
Author(s):  
Karen A Bell ◽  
Rayne Delong ◽  
Priyodarshan Goswamee ◽  
A Rory McQuiston

Abstract The entorhinal cortex alvear pathway is a major excitatory input to hippocampal CA1, yet nothing is known about its physiological impact. We investigated the alvear pathway projection and innervation of neurons in CA1 using optogenetics and whole cell patch clamp methods in transgenic mouse brain slices. Using this approach, we show that the medial entorhinal cortical alvear inputs onto CA1 pyramidal cells (PCs) and interneurons with cell bodies located in stratum oriens were monosynaptic, had low release probability, and were mediated by glutamate receptors. Optogenetic theta burst stimulation was unable to elicit suprathreshold activation of CA1 PCs but was capable of activating CA1 interneurons. However, different subtypes of interneurons were not equally affected. Higher burst action potential frequencies were observed in parvalbumin-expressing interneurons relative to vasoactive-intestinal peptide-expressing or a subset of oriens lacunosum-moleculare (O-LM) interneurons. Furthermore, alvear excitatory synaptic responses were observed in greater than 70% of PV and VIP interneurons and less than 20% of O-LM cells. Finally, greater than 50% of theta burst-driven inhibitory postsynaptic current amplitudes in CA1 PCs were inhibited by optogenetic suppression of PV interneurons. Therefore, our data suggest that the alvear pathway primarily affects hippocampal CA1 function through feedforward inhibition of select interneuron subtypes.


2001 ◽  
Vol 281 (4) ◽  
pp. R1114-R1118 ◽  
Author(s):  
Tetsuro Shirasaka ◽  
Satoshi Miyahara ◽  
Takato Kunitake ◽  
Qing-Hua Jin ◽  
Kazuo Kato ◽  
...  

Orexins, also called hypocretins, are newly discovered hypothalamic peptides that are thought to be involved in various physiological functions. In spite of the fact that orexin receptors, especially orexin receptor 2, are abundant in the hypothalamic paraventricular nucleus (PVN), the effects of orexins on PVN neurons remain unknown. Using a whole cell patch-clamp recording technique, we investigated the effects of orexin-B on PVN neurons of rat brain slices. Bath application of orexin-B (0.01–1.0 μM) depolarized 80.8% of type 1 ( n = 26) and 79.2% of type 2 neurons tested ( n = 24) in the PVN in a concentration-dependent manner. The effects of orexin-B persisted in the presence of TTX (1 μM), indicating that these depolarizing effects were generated postsynaptically. Addition of Cd2+(1 mM) to artificial cerebrospinal fluid containing TTX (1 μM) significantly reduced the depolarizing effect in type 2 neurons. These results suggest that orexin-B has excitatory effects on the PVN neurons mediated via a depolarization of the membrane potential.


2000 ◽  
Vol 83 (5) ◽  
pp. 2649-2660 ◽  
Author(s):  
C. Peter Bengtson ◽  
Peregrine B. Osborne

The ventral pallidum is a major source of output for ventral corticobasal ganglia circuits that function in translating motivationally relevant stimuli into adaptive behavioral responses. In this study, whole cell patch-clamp recordings were made from ventral pallidal neurons in brain slices from 6- to 18-day-old rats. Intracellular filling with biocytin was used to correlate the electrophysiological and morphological properties of cholinergic and noncholinergic neurons identified by choline acetyltransferase immunohistochemistry. Most cholinergic neurons had a large whole cell conductance and exhibited marked fast (i.e., anomalous) inward rectification. These cells typically did not fire spontaneously, had a hyperpolarized resting membrane potential, and also exhibited a prominent spike afterhyperpolarization (AHP) and strong spike accommodation. Noncholinergic neurons had a smaller whole cell conductance, and the majority of these cells exhibited marked time-dependent inward rectification that was due to an h-current. This current activated slowly over several hundred milliseconds at potentials more negative than −80 mV. Noncholinergic neurons fired tonically in regular or intermittent patterns, and two-thirds of the cells fired spontaneously. Depolarizing current injection in current clamp did not cause spike accommodation but markedly increased the firing frequency and in some cells also altered the pattern of firing. Spontaneous tetrodotoxin-sensitive GABAA-mediated inhibitory postsynaptic currents (IPSCs) were frequently recorded in noncholinergic neurons. These results show that cholinergic pallidal neurons have similar properties to magnocellular cholinergic neurons in other parts of the forebrain, except that they exhibit strong spike accommodation. Noncholinergic ventral pallidal neurons have large h-currents that could have a physiological role in determining the rate or pattern of firing of these cells.


2005 ◽  
Vol 94 (6) ◽  
pp. 4491-4501 ◽  
Author(s):  
Fan Jia ◽  
Leonardo Pignataro ◽  
Claude M. Schofield ◽  
Minerva Yue ◽  
Neil L. Harrison ◽  
...  

Whole cell patch-clamp recordings were obtained from thalamic ventrobasal (VB) and reticular (RTN) neurons in mouse brain slices. A bicuculline-sensitive tonic current was observed in VB, but not in RTN, neurons; this current was increased by the GABAA receptor agonist 4,5,6,7-tetrahydroisothiazolo-[5,4-c]pyridine-3-ol (THIP; 0.1 μM) and decreased by Zn2+ (50 μM) but was unaffected by zolpidem (0.3 μM) or midazolam (0.2 μM). The pharmacological profile of the tonic current is consistent with its generation by activation of GABAA receptors that do not contain the α1 or γ2 subunits. GABAA receptors expressed in HEK 293 cells that contained α4β2δ subunits showed higher sensitivity to THIP (gaboxadol) and GABA than did receptors made up from α1β2δ, α4β2γ2s, or α1β2γ2s subunits. Western blot analysis revealed that there is little, if any, α3 or α5 subunit protein in VB. In addition, co-immunoprecipitation studies showed that antibodies to the δ subunit could precipitate α4, but not α1 subunit protein. Confocal microscopy of thalamic neurons grown in culture confirmed that α4 and δ subunits are extensively co-localized with one another and are found predominantly, but not exclusively, at extrasynaptic sites. We conclude that thalamic VB neurons express extrasynaptic GABAA receptors that are highly sensitive to GABA and THIP and that these receptors are most likely made up of α4β2δ subunits. In view of the critical role of thalamic neurons in the generation of oscillatory activity associated with sleep, these receptors may represent a principal site of action for the novel hypnotic agent gaboxadol.


2019 ◽  
Vol 9 (21) ◽  
pp. 4693 ◽  
Author(s):  
Mohammad Qneibi ◽  
Nidal Jaradat ◽  
Nour Emwas

Essential oils have been advertised endlessly to be very beneficial for the health of humans, and an extensive amount of research examines the validity of such claims. In contribution, the current study evaluates the neuroprotective properties of Citronellol and Geraniol essential oils (EOs). In relationship to the biophysical gating properties of different the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR) subunits, the EOs were administered to HEK293 (Human embryonic kidney 293) cells and examined for any inhibition and effect on desensitization or deactivation rates, using whole-cell patch-clamp electrophysiology. Our results demonstrated the highest levels of inhibition from Citronellol oil by four-fold on all AMPARs subunits. Likewise, Geraniol oil had a similar inhibiting impact on the receptors, and both oils decreased the desensitization and deactivation rates of the inhibited receptors. Thus, the examined EOs of this study portray neuroprotective qualities by targeting AMPARs activation and reducing desensitization and deactivation rates. Finally, the results of the current study entail a better understanding of AMPARs, provides a natural template for future drug synthesis to treat neurological diseases associated with excessive AMPAR activation, and offers a possible mechanism by which these essential oils deploy their ‘calming’ effect.


2007 ◽  
Vol 129 (3) ◽  
pp. 257-265 ◽  
Author(s):  
Yuriy Pankratov ◽  
Ulyana Lalo ◽  
Alexei Verkhratsky ◽  
R. Alan North

Transient currents occur at rest in cortical neurones that reflect the quantal release of transmitters such as glutamate and γ-aminobutyric acid (GABA). We found a bimodal amplitude distribution for spontaneously occurring inward currents recorded from mouse pyramidal neurones in situ, in acutely isolated brain slices superfused with picrotoxin. Larger events were blocked by glutamate receptor (AMPA, kainate) antagonists; smaller events were partially inhibited by P2X receptor antagonists suramin and PPADS. The decay of the larger events was selectively prolonged by cyclothiazide. Stimulation of single intracortical axons elicited quantal glutamate-mediated currents and also quantal currents with amplitudes corresponding to the smaller spontaneous inward currents. It is likely that the lower amplitude spontaneous events reflect packaged ATP release. This occurs with a lower probability than that of glutamate, and evokes unitary currents about half the amplitude of those mediated through AMPA receptors. Furthermore, the packets of ATP appear to be released from vesicle in a subset of glutamate-containing terminals.


2013 ◽  
Vol 110 (8) ◽  
pp. 1765-1781 ◽  
Author(s):  
Wenjie Ren ◽  
Takaki Kiritoshi ◽  
Stéphanie Grégoire ◽  
Guangchen Ji ◽  
Remo Guerrini ◽  
...  

Amygdala plasticity is an important contributor to the emotional-affective dimension of pain. Recently discovered neuropeptide S (NPS) has anxiolytic properties through actions in the amygdala. Behavioral data also suggest antinociceptive effects of centrally acting NPS, but site and mechanism of action remain to be determined. This is the first electrophysiological analysis of pain-related NPS effects in the brain. We combined whole cell patch-clamp recordings in brain slices and behavioral assays to test the hypothesis that NPS activates synaptic inhibition of amygdala output to suppress pain behavior in an arthritis pain model. Recordings of neurons in the laterocapsular division of the central nucleus (CeLC), which serves pain-related amygdala output functions, show that NPS inhibited the enhanced excitatory drive [monosynaptic excitatory postsynaptic currents (EPSCs)] from the basolateral amygdala (BLA) in the pain state. As shown by miniature EPSC analysis, the inhibitory effect of NPS did not involve direct postsynaptic action on CeLC neurons but rather a presynaptic, action potential-dependent network mechanism. Indeed, NPS increased external capsule (EC)-driven synaptic inhibition of CeLC neurons through PKA-dependent facilitatory postsynaptic action on a cluster of inhibitory intercalated (ITC) cells. NPS had no effect on BLA neurons. High-frequency stimulation (HFS) of excitatory EC inputs to ITC cells also inhibited synaptic activation of CeLC neurons, providing further evidence that ITC activation can control amygdala output. The cellular mechanisms by which EC-driven synaptic inhibition controls CeLC output remain to be determined. Administration of NPS into ITC, but not CeLC, also inhibited vocalizations and anxiety-like behavior in arthritic rats. A selective NPS receptor antagonist ([d-Cys(tBu)5]NPS) blocked electrophysiological and behavioral effects of NPS. Thus NPS is a novel tool to control amygdala output and pain-related affective behaviors through a direct action on inhibitory ITC cells.


Sign in / Sign up

Export Citation Format

Share Document