scholarly journals The entorhinal cortical alvear pathway differentially excites interneuron subtypes in hippocampal CA1

2020 ◽  
Author(s):  
Karen A. Bell ◽  
Rayne Delong ◽  
Priyodarshan Goswamee ◽  
A. Rory McQuiston

AbstractThe entorhinal cortex alvear pathway is a major excitatory input to hippocampal CA1, yet nothing is known about its physiological impact. We investigated the alvear pathway projection and innervation of neurons in CA1 using optogenetics and whole cell patch clamp methods in transgenic mouse brain slices. Using this approach, we show that the medial entorhinal cortical alvear inputs onto both CA1 pyramidal cells and stratum oriens interneurons were monosynaptic, had low release probability, and were mediated by AMPA receptors. Optogenetic theta burst stimulation was unable to elicit suprathreshold activation of CA1 pyramidal neurons but was capable of activating CA1 stratum oriens interneurons. CA1 stratum oriens interneuron subtypes were not equally affected. Higher burst action potential frequencies were observed in parvalbumin-expressing interneurons relative to vasoactive-intestinal peptide-expressing or a subset of oriens lacunosum-moleculare interneurons. Furthermore, alvear excitatory synaptic responses were observed in greater than 70% of PV and VIP interneurons and less than 20% of O-LM cells. Finally, greater than 50% of theta burst-driven inhibitory postsynaptic current amplitudes in CA1 PCs were inhibited by optogenetic suppression of PV interneurons. Therefore, our data suggest that the alvear pathway primarily affects hippocampal CA1 function through feedforward inhibition of select interneuron subtypes.

2020 ◽  
Author(s):  
Karen A Bell ◽  
Rayne Delong ◽  
Priyodarshan Goswamee ◽  
A Rory McQuiston

Abstract The entorhinal cortex alvear pathway is a major excitatory input to hippocampal CA1, yet nothing is known about its physiological impact. We investigated the alvear pathway projection and innervation of neurons in CA1 using optogenetics and whole cell patch clamp methods in transgenic mouse brain slices. Using this approach, we show that the medial entorhinal cortical alvear inputs onto CA1 pyramidal cells (PCs) and interneurons with cell bodies located in stratum oriens were monosynaptic, had low release probability, and were mediated by glutamate receptors. Optogenetic theta burst stimulation was unable to elicit suprathreshold activation of CA1 PCs but was capable of activating CA1 interneurons. However, different subtypes of interneurons were not equally affected. Higher burst action potential frequencies were observed in parvalbumin-expressing interneurons relative to vasoactive-intestinal peptide-expressing or a subset of oriens lacunosum-moleculare (O-LM) interneurons. Furthermore, alvear excitatory synaptic responses were observed in greater than 70% of PV and VIP interneurons and less than 20% of O-LM cells. Finally, greater than 50% of theta burst-driven inhibitory postsynaptic current amplitudes in CA1 PCs were inhibited by optogenetic suppression of PV interneurons. Therefore, our data suggest that the alvear pathway primarily affects hippocampal CA1 function through feedforward inhibition of select interneuron subtypes.


2020 ◽  
Vol 78 (3) ◽  
pp. 951-964
Author(s):  
Marvin Ruiter ◽  
Lotte J. Herstel ◽  
Corette J. Wierenga

Background: In an early stage of Alzheimer’s disease (AD), before the formation of amyloid plaques, neuronal network hyperactivity has been reported in both patients and animal models. This suggests an underlying disturbance of the balance between excitation and inhibition. Several studies have highlighted the role of somatic inhibition in early AD, while less is known about dendritic inhibition. Objective: In this study we investigated how inhibitory synaptic currents are affected by elevated Aβ levels. Methods: We performed whole-cell patch clamp recordings of CA1 pyramidal neurons in organotypic hippocampal slice cultures after treatment with Aβ-oligomers and in hippocampal brain slices from AppNL-F-G mice (APP-KI). Results: We found a reduction of spontaneous inhibitory postsynaptic currents (sIPSCs) in CA1 pyramidal neurons in organotypic slices after 24 h Aβ treatment. sIPSCs with slow rise times were reduced, suggesting a specific loss of dendritic inhibitory inputs. As miniature IPSCs and synaptic density were unaffected, these results suggest a decrease in activity-dependent transmission after Aβ treatment. We observed a similar, although weaker, reduction in sIPSCs in CA1 pyramidal neurons from APP-KI mice compared to control. When separated by sex, the strongest reduction in sIPSC frequency was found in slices from male APP-KI mice. Consistent with hyperexcitability in pyramidal cells, dendritically targeting interneurons received slightly more excitatory input. GABAergic action potentials had faster kinetics in APP-KI slices. Conclusion: Our results show that Aβ affects dendritic inhibition via impaired action potential driven release, possibly due to altered kinetics of GABAergic action potentials. Reduced dendritic inhibition may contribute to neuronal hyperactivity in early AD.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Pojeong Park ◽  
John Georgiou ◽  
Thomas M. Sanderson ◽  
Kwang-Hee Ko ◽  
Heather Kang ◽  
...  

AbstractLong-term potentiation (LTP) at hippocampal CA1 synapses can be expressed by an increase either in the number (N) of AMPA (α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid) receptors or in their single channel conductance (γ). Here, we have established how these distinct synaptic processes contribute to the expression of LTP in hippocampal slices obtained from young adult rodents. LTP induced by compressed theta burst stimulation (TBS), with a 10 s inter-episode interval, involves purely an increase in N (LTPN). In contrast, either a spaced TBS, with a 10 min inter-episode interval, or a single TBS, delivered when PKA is activated, results in LTP that is associated with a transient increase in γ (LTPγ), caused by the insertion of calcium-permeable (CP)-AMPA receptors. Activation of CaMKII is necessary and sufficient for LTPN whilst PKA is additionally required for LTPγ. Thus, two mechanistically distinct forms of LTP co-exist at these synapses.


2002 ◽  
Vol 88 (1) ◽  
pp. 107-116 ◽  
Author(s):  
David R. Ireland ◽  
Wickliffe C. Abraham

Previous studies have implicated phospholipase C (PLC)-linked Group I metabotropic glutamate receptors (mGluRs) in regulating the excitability of hippocampal CA1 pyramidal neurons. We used intracellular recordings from rat hippocampal slices and specific antagonists to examine in more detail the mGluR receptor subtypes and signal transduction mechanisms underlying this effect. Application of the Group I mGluR agonist (RS)-3,5-dihydroxyphenylglycine (DHPG) suppressed slow- and medium-duration afterhyperpolarizations (s- and mAHP) and caused a consequent increase in cell excitability as well as a depolarization of the membrane and an increase in input resistance. Interestingly, with the exception of the suppression of the mAHP, these effects were persistent, and in the case of the sAHP lasting for more than 1 h of drug washout. Preincubation with the specific mGluR5 antagonist, 2-methyl-6-(phenylethynyl)-pyridine (MPEP), reduced but did not completely prevent the effects of DHPG. However, preincubation with both MPEP and the mGluR1 antagonist LY367385 completely prevented the DHPG-induced changes. These results demonstrate that the DHPG-induced changes are mediated partly by mGluR5 and partly by mGluR1. Because Group I mGluRs are linked to PLC via G-protein activation, we also investigated pathways downstream of PLC activation, using chelerythrine and cyclopiazonic acid to block protein kinase C (PKC) and inositol 1,4,5-trisphosphate-(IP3)-activated Ca2+ stores, respectively. Neither inhibitor affected the DHPG-induced suppression of the sAHP or the increase in excitability nor did an inhibitor of PLC itself, U-73122. Taken together, these results argue that in CA1 pyramidal cells in the adult rat, DHPG activates mGluRs of both the mGluR5 and mGluR1 subtypes, causing a long-lasting suppression of the sAHP and a consequent persistent increase in excitability via a PLC-, PKC-, and IP3-independent transduction pathway.


2020 ◽  
Vol 30 (8) ◽  
pp. 4689-4707
Author(s):  
Chelsea S Sullivan ◽  
Vishwa Mohan ◽  
Paul B Manis ◽  
Sheryl S Moy ◽  
Young Truong ◽  
...  

Abstract Parvalbumin (PV)-expressing basket interneurons in the prefrontal cortex (PFC) regulate pyramidal cell firing, synchrony, and network oscillations. Yet, it is unclear how their perisomatic inputs to pyramidal neurons are integrated into neural circuitry and adjusted postnatally. Neural cell adhesion molecule NCAM is expressed in a variety of cells in the PFC and cooperates with EphrinA/EphAs to regulate inhibitory synapse density. Here, analysis of a novel parvalbumin (PV)-Cre: NCAM F/F mouse mutant revealed that NCAM functions presynaptically in PV+ basket interneurons to regulate postnatal elimination of perisomatic synapses. Mutant mice exhibited an increased density of PV+ perisomatic puncta in PFC layer 2/3, while live imaging in mutant brain slices revealed fewer puncta that were dynamically eliminated. Furthermore, EphrinA5-induced growth cone collapse in PV+ interneurons in culture depended on NCAM expression. Electrophysiological recording from layer 2/3 pyramidal cells in mutant PFC slices showed a slower rise time of inhibitory synaptic currents. PV-Cre: NCAM F/F mice exhibited impairments in working memory and social behavior that may be impacted by altered PFC circuitry. These findings suggest that the density of perisomatic synapses of PV+ basket interneurons is regulated postnatally by NCAM, likely through EphrinA-dependent elimination, which is important for appropriate PFC network function and behavior.


2014 ◽  
Vol 112 (2) ◽  
pp. 263-275 ◽  
Author(s):  
Hayley A. Mattison ◽  
Ashish A. Bagal ◽  
Michael Mohammadi ◽  
Nisha S. Pulimood ◽  
Christian G. Reich ◽  
...  

GluA2-lacking, calcium-permeable α-amino-3-hydroxy-5-methylisoxazole-4-propionate receptors (AMPARs) have unique properties, but their presence at excitatory synapses in pyramidal cells is controversial. We have tested certain predictions of the model that such receptors are present in CA1 cells and show here that the polyamine spermine, but not philanthotoxin, causes use-dependent inhibition of synaptically evoked excitatory responses in stratum radiatum, but not s. oriens, in cultured and acute hippocampal slices. Stimulation of single dendritic spines by photolytic release of caged glutamate induced an N-methyl-d-aspartate receptor-independent, use- and spermine-sensitive calcium influx only at apical spines in cultured slices. Bath application of glutamate also triggered a spermine-sensitive influx of cobalt into CA1 cell dendrites in s. radiatum. Responses of single apical, but not basal, spines to photostimulation displayed prominent paired-pulse facilitation (PPF) consistent with use-dependent relief of cytoplasmic polyamine block. Responses at apical dendrites were diminished, and PPF was increased, by spermine. Intracellular application of pep2m, which inhibits recycling of GluA2-containing AMPARs, reduced apical spine responses and increased PPF. We conclude that some calcium-permeable, polyamine-sensitive AMPARs, perhaps lacking GluA2 subunits, are present at synapses on apical dendrites of CA1 pyramidal cells, which may allow distinct forms of synaptic plasticity and computation at different sets of excitatory inputs.


2000 ◽  
Vol 83 (4) ◽  
pp. 2349-2354 ◽  
Author(s):  
Ansalan Stewart ◽  
Robert C. Foehring

Our previous studies of calcium (Ca2+) currents in cortical pyramidal cells revealed that the percentage contribution of each Ca2+ current type to the whole cell Ca2+ current varies from cell to cell. The extent to which these currents are modulated by neurotransmitters is also variable. This study was directed at testing the hypothesis that a major source of this variability is recording from multiple populations of pyramidal cells. We used the whole cell patch-clamp technique to record from dissociated corticocortical, corticostriatal, and corticotectal projecting pyramidal cells. There were significant differences between the three pyramidal cell types in the mean percentage of L-, P-, and N-type Ca2+ currents. For both N- and P-type currents, the range of percentages expressed was small for corticostriatal and corticotectal cells as compared with cells which project to the corpus callosum or to the general population. The variance was significantly different between cell types for N- and P-type currents. These results suggest that an important source of the variability in the proportions of Ca2+ current types present in neocortical pyramidal neurons is recording from multiple populations of pyramidal cells.


2003 ◽  
Vol 90 (2) ◽  
pp. 771-779 ◽  
Author(s):  
Chaelon I. O. Myme ◽  
Ken Sugino ◽  
Gina G. Turrigiano ◽  
Sacha B. Nelson

To better understand regulation of N-methyl-d-aspartate (NMDA) and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor complements across the cortex, and to investigate NMDA receptor (NMDAR)-based models of persistent activity, we compared NMDA/AMPA ratios in prefrontal (PFC) and visual cortex (VC) in rat. Whole cell voltage-clamp responses were recorded in brain slices from layer 2/3 pyramidal cells of the medial PFC and VC of rats aged p16–p21. Mixed miniature excitatory postsynaptic currents (mEPSCs) having AMPA receptor (AMPAR)- and NMDAR-mediated components were isolated in nominally 0 Mg2+ ACSF. Averaged mEPSCs were well-fit by double exponentials. No significant differences in the NMDA/AMPA ratio (PFC: 27 ± 1%; VC: 28 ± 3%), peak mEPSC amplitude (PFC: 19.1 ± 1 pA; VC: 17.5 ± 0.7 pA), NMDAR decay kinetics (PFC: 69 ± 8 ms; VC: 67 ± 6 ms), or degree of correlation between NMDAR- and AMPAR-mediated mEPSC components were found between the areas (PFC: n = 27; VC: n = 28). Recordings from older rats (p26–29) also showed no differences. EPSCs were evoked extracellularly in 2 mM Mg2+ at depolarized potentials; although the average NMDA/AMPA ratio was larger than that observed for mEPSCs, the ratio was similar in the two regions. In nominally 0 Mg2+ and in the presence of CNQX, spontaneous activation of NMDAR increased recording noise and produced a small tonic depolarization which was similar in both areas. We conclude that this basic property of excitatory transmission is conserved across PFC and VC synapses and is therefore unlikely to contribute to differences in firing patterns observed in vivo in the two regions.


2009 ◽  
Vol 30 (3) ◽  
pp. 555-565 ◽  
Author(s):  
Hui Ye ◽  
Shirin Jalini ◽  
Liang Zhang ◽  
Milton Charlton ◽  
Peter L Carlen

Two types of quantal spontaneous neurotransmitter release are present in the nervous system, namely action potential (AP)-dependent release and AP-independent release. Previous studies have identified and characterized AP-independent release during hypoxia and ischemia. However, the relative contribution of AP-dependent spontaneous release to the overall glutamate released during transient ischemia has not been quantified. Furthermore, the neuronal activity that mediates such release has not been identified. Using acute brain slices, we show that AP-dependent release constitutes approximately one-third of the overall glutamate-mediated excitatory postsynaptic potentials/currents (EPSPs/EPSCs) measured onto hippocampal CA1 pyramidal neurons. However, during transient (2 mins) in vitro hypoxia–hypoglycemia, large-amplitude, AP-dependent spontaneous release is significantly enhanced and contributes to 74% of the overall glutamatergic responses. This increased AP-dependent release is due to hyper-excitability in the presynaptic CA3 neurons, which is mediated by the activity of NMDA receptors. Spontaneous glutamate release during ischemia can lead to excitotoxicity and perturbation of neural network functions.


1985 ◽  
Vol 63 (7) ◽  
pp. 872-878 ◽  
Author(s):  
M. W. Oliver ◽  
J. J. Miller

To determine the alterations in cellular function which may contribute to the chronic predisposition of neuronal tissue to epileptiform activity, the membrane properties and inhibitory processes of hippocampal CA1 pyramidal cells were investigated using in vitro slices prepared from commissural-kindled rats. No changes were observed in resting membrane potential, input resistance, spike amplitude, and membrane time constant of "kindled" CA1 pyramidal neurons when compared with controls. There were also no differences between control and kindled preparations in the amplitude of recurrent inhibitory postsynaptic potentials (IPSP) and in the duration of inhibition produced by either alvear (Alv) or stratum radiatum (SR) stimulation. Irrespective of group, repetitive stimulation of the Alv reduced the amplitude of the recurrent IPSP but failed to induce seizurelike activity. On the other hand, repetitive stimulation of SR frequently produced a neuronal burst discharge even though the duration and to some extent the amplitude of orthodromic inhibition was increased. On the basis of these data, it may be suggested that chronic changes in CA1 pyramidal cell membrane properties and transient reductions of inhibitory processes do not underlie the enhanced sensitivity of these neurons to seizure activity associated with kindling.


Sign in / Sign up

Export Citation Format

Share Document