scholarly journals Integrated Modeling, Simulation, and Visualization for Nanomaterials

Complexity ◽  
2018 ◽  
Vol 2018 ◽  
pp. 1-16
Author(s):  
Feiwei Qin ◽  
Haibin Xia ◽  
Yong Peng ◽  
Zizhao Wu

Computer aided modeling and simulation of nanomaterials can describe the correlation between the material’s microstructure and its macroscopic properties quantitatively. In this paper, we propose an integrated modeling, simulation, and visualization approach for designing nanomaterials. Firstly, a fast parametric modeling method for important nanomaterials such as graphene, nanotubes, and MOFs is proposed; secondly, the material model could be edited adaptively without affecting the validity of the model on the physical level; thirdly a preliminary calculation for nanomaterials’ energy is implemented based on the theory of surface fitting; finally, an integrated framework of nanomaterials modeling, simulation, and visualization is designed and implemented. Experimental results show that the proposed approach is feasible and effective.

2018 ◽  
Vol 22 (8) ◽  
pp. 2768-2795 ◽  
Author(s):  
Meysam Khodaei ◽  
Mojtaba Haghighi-Yazdi ◽  
Majid Safarabadi

In this paper, a numerical model is developed to simulate the ballistic impact of a projectile on a sandwich panel with honeycomb core and composite skin. To this end, a suitable material model for the aluminum honeycomb core is used taking the strain-rate dependent properties into account. To validate the ballistic impact of the projectile on the honeycomb core, numerical results are compared with the experimental results available in literature and ballistic limit velocities are predicted with good accuracy. Moreover, to achieve composite skin material model, a VUMAT subroutine including damage initiation based on Hashin’s seven failure criteria and damage evolution based on MLT approach modulus degradation is used. To validate the composite material model VUMAT subroutine, the ballistic limit velocities of the projectile impact on the composite laminates are predicted similar to the numerical results presented by other researchers. Next, the numerical model of the sandwich panel ballistic impact at different velocities is compared with the available experimental results in literature, and energy absorption capacity of the sandwich panel is predicted accurately. In addition, the numerical model simulated the sandwich panel damage mechanisms in different stages similar to empirical observations. Also, the composite skin damages are investigated based on different criteria damage contours.


Author(s):  
Zheng (Jeremy) Li

The prototyping and implementation of robotic system is a scientific and technological integrating of robotic system design, development, testing, and application. This chapter describes the recent development and applications of robotic systems to surgery procedures in biomedical engineering and automated manufacturing processes in industry. It includes the design and development, computer-aided modeling and simulation, prototype analysis, and testing of robotic systems in these two different applications.


Materials ◽  
2020 ◽  
Vol 13 (17) ◽  
pp. 3848
Author(s):  
Radosław Kiciński ◽  
Andrzej Kubit

The article presents the characteristics of 1.3964 steel and the results of firing a 7.62 mm projectile with a steel core. A simplified Johnson–Cook material model for steel and projectile was used. Then, a FEM (finite element method) simulation was prepared to calibrate the material constants and boundary conditions necessary to be used in simulations of the entire hull model. It was checked how projectile modeling affects the FEM calculation results. After obtaining the simulation results consistent with the experimental results, using the model of a modern minehunter, the resistance of the ship’s hull to penetration by a small-caliber projectile was tested.


1994 ◽  
pp. 23-43
Author(s):  
Mohd. Ramzan Mainal

Planing crafts have been the traditional solution to high speed at sea. However, the limitations on high speed planing hull forms in a seaway have led to a tremendous amount of work currently being carried out on hydrofoils, catamarans and hybrid crafts. Despite these facts, the warship, commercial and pleasure markets still show demands for planing crafts and many new designs appear every year. The objective of this paper is to develop a computational procedure for predicting the total resistance of hard chine planing hull forms, prior to model testing. The computer prediction is later validated with existing experimental results.


Author(s):  
Chithajalu Kiran Sagar ◽  
Amrita Priyadarshini ◽  
Amit Kumar Gupta ◽  
Sidharth Kumar Shukla

Tungsten Heavy Alloys (WHA) are used in counterbalance and ballast weights for aerodynamic balancing in fixed and rotary wing aircraft. Manufacturing these components for closer tolerances using machining is a challenging task. The present work aims to develop a 2D Finite Element (FE) model to simulate the chip formation process during machining of WHA using Johnson Cook Material Model (JCMM). The model constants for 95%WHA are determined based on the high strain rate test data using least square method. The calculated values are further optimized using Genetic Algorithm (GA) and Artificial Bee Colony (ABC) algorithm, which are then used as material inputs for FE simulation of machining WHA. The predicted results such as cutting force, chip geometry, shear stress, shear angle are presented and compared with the experimental results under similar cutting conditions. It has been observed that the constants obtained from ABC algorithm show minimum error in the cutting performance measures for all the experimental results.


Author(s):  
Scott A. Ziolek ◽  
Pieter C. Kruithof

More and more, digital human modeling and simulation is being used in conjunction with CAD systems to address ergonomic issues early within the development and manufacturing process. However, purchasing a human modeling software package does not guarantee a user-centered design anymore than purchasing a word processor makes someone an author. This paper addresses some of the practical issues that confront human modeling and simulation users, including the collection of geometry, posturing the manikin, and selection of an analysis. For the purposes of discussion, human simulation will be divided into three broad areas: the environment, manikin selection, and analysis.


Sign in / Sign up

Export Citation Format

Share Document