scholarly journals Development and Validation of an HPLC-MS/MS Method for Rapid Simultaneous Determination of Cefprozil Diastereomers in Human Plasma

2018 ◽  
Vol 2018 ◽  
pp. 1-9 ◽  
Author(s):  
Guodong He ◽  
Liping Mai ◽  
Xipei Wang

Background. Both cis- and trans-cefprozil have antimicrobial activity, but their potencies are quite different. It is therefore necessary to develop a sensitive method to simultaneously determine both isomers for pharmacokinetic and bioequivalence studies. Methods. An LC-MS/MS method, using stable isotope-labeled cefprozil as the internal standard, was developed and validated. The analytes were extracted from plasma by protein precipitation and separated on a reverse-phase C18 column using a gradient program consisting of 0.5% formic acid and acetonitrile within 4 min. The mass spectrometry acquisition was performed with multiple reaction monitoring in positive ion mode using the respective [M+H]+ ions, m/z 391.2→114.0 for cefprozil and 395.0→114.5 for cefprozil-D4. Results. The calibration curves were linear over the ranges of 0.025–15 μg/mL for cis-cefprozil and 0.014–1.67 μg/mL for trans-cefprozil. The accuracies for the cis and trans isomers of cefprozil were 93.1% and 103.0%, respectively. The intra- and interassay precisions for the QC samples of the isomers were < 14.3%. The intra- and interassay precisions at the LLOQ were < 16.5%. Conclusions. The method was sensitive and reproducible and was applied in a pilot pharmacokinetic study of healthy volunteers.

2020 ◽  
Vol 10 (3-s) ◽  
pp. 176-181
Author(s):  
Rohit Dutt ◽  
Kailash Chander Malik ◽  
Manoj Karwa ◽  
Gaurav Kumar JAIN

A simple ultra-high performance liquid chromatography coupled with tandem mass spectrometry (UPLC-MS/MS) method was developed and fully validated to simultaneously determine levothyroxine (LT4) and liothyronine (LT3) in human serum. Sample preparation was done through protein precipitation with acetonitrile. HyPURITY C18 column was selected to achieve rapid separation for LT4 and LT3 within 4 min. Electrospray ionization (ESI) under multiple reaction monitoring (MRM) was used to monitor the ion transitions for LT4 (m/z 777.54→731.52), LT3 (m/z 651.64→ 605.65) and internal standard LT4-D3 (m/z 780.53 →734.19), operating in the positive ion mode. The method was proved to be accurate (82.35% to 113.56%) and precise (0.73% to 8.28%) over concentration range of 50.37 ng/ml – 300.13 ng/ml for LT4 and 0.5 ng/ml – 50.37 ng/ml for LT3. The validated method could be applied for pharmacokinetic study or bioequivalence testing of combination products of LT4 and LT3. Keywords: Levothyroxine; Liothyronine; Ultra Performance Liquid Chromatographic; Mass Spectrometry; Human Serum


2014 ◽  
Vol 60 (2) ◽  
pp. 353-360 ◽  
Author(s):  
Lynn Carr ◽  
Anne-Laure Gagez ◽  
Marie Essig ◽  
François-Ludovic Sauvage ◽  
Pierre Marquet ◽  
...  

Abstract BACKGROUND Blood concentrations of the calcineurin inhibitors (CNIs) cyclosporine and tacrolimus are currently measured to monitor immunosuppression in transplant patients. The measurement of calcineurin (CN) phosphatase activity has been proposed as a complementary pharmacodynamic approach. However, determining CN activity with current methods is not practical. We developed a new method amenable to routine use. METHODS Using liquid chromatography–multiple reaction monitoring mass spectrometry (LC-MRM-MS), we quantified CN activity by measuring the dephosphorylation of a synthetic phosphopeptide substrate. A stable isotope analog of the product peptide served as internal standard, and a novel inhibitor cocktail minimized dephosphorylation by other major serine/threonine phosphatases. The assay was used to determine CN activity in peripheral blood mononuclear cells (PBMCs) isolated from 20 CNI-treated kidney transplant patients and 9 healthy volunteers. RESULTS Linearity was observed from 0.16 to 2.5 μmol/L of product peptide, with accuracy in the 15% tolerance range. Intraassay and interassay recoveries were 100.6 (9.6) and 100 (7.5), respectively. Michaelis–Menten kinetics for purified CN were Km = 10.7 (1.6) μmol/L, Vmax = 2.8 (0.3) μmol/min · mg, and for Jurkat lysate, Km = 182.2 (118.0) μmol/L, Vmax = 0.013 (0.006) μmol/min · mg. PBMC CN activity was successfully measured in a single tube with an inhibitor cocktail. CONCLUSIONS Because LC-MRM-MS is commonly used in routine clinical dosage of drugs, this CN activity assay could be applied, with parallel blood drug concentration monitoring, to a large panel of patients to reevaluate the validity of PBMC CN activity monitoring.


Author(s):  
Narottam Pal ◽  
Avanapu Srinivasa Rao ◽  
Pigilli Ravikumar

<p><strong>Objective</strong>:<strong> </strong>To develop a new method and validate the same for the determination of Febuxostat (FBS) in human plasma by liquid chromatography–mass spectrometry (LCMS).</p><p><strong>Methods</strong>:<strong> </strong>The present method utilized reversed-phase high-performance liquid chromatography with tandem mass spectroscopy. Febuxostat D9 (FBS D9) was used as internal standard (IS). The analyte and internal standard were separated from human plasma by using solid phase extraction method. Zorbax Eclipse XDB, C<sub>8</sub>, 100 mm x 4.6 mm, 3.5 µm column was used and HPLC grade acetonitrile, 5 millimolar (mM) ammonium format (80: 20, v/v) as mobile phase, detected by mass spectrometry operating in positive ion and multiple reaction monitoring modes.</p><p><strong>Results</strong>:<strong> </strong>The parent and production transitions for FBS and internal standard were at m/z 317.1→261.0 and 326.1→262.0 respectively. The method was validated for system suitability, specificity, carryover effect, linearity, precision, accuracy, matrix effect, sensitivity and stability. The linearity range was from 20.131 ng/ml to10015. 534 ng/ml with a correlation coefficient of 0.999. Precision results (%CV) across six quality control samples were within the limit. The percentage recovery of FBS and internal standard from matrix samples was found to be 76.57% and 75.03% respectively.</p><p><strong>Conclusion</strong>:<strong> </strong>Present study describes new LC-MS method for the quantification of FBS in a pharmaceutical formulation. According to validation results, it was found to be a simple, sensitive, accurate and precise method and also free from any kind of interference. Therefore the proposed analytical method can be used for routine analysis for the estimation of FBS in its formulation.</p>


2018 ◽  
Vol 64 (8) ◽  
pp. 1230-1238 ◽  
Author(s):  
Hyunsoo Kim ◽  
Areum Sohn ◽  
Injoon Yeo ◽  
Su Jong Yu ◽  
Jung-Hwan Yoon ◽  
...  

Abstract BACKGROUND Lens culinaris agglutinin-reactive fraction of α-fetoprotein (AFP-L3) is a serum biomarker for hepatocellular carcinoma (HCC). AFP-L3 is typically measured by liquid-phase binding assay (LiBA). However, LiBA does not always reflect AFP-L3 concentrations because of its low analytical sensitivity. Thus, we aimed to develop an analytically sensitive multiple reaction monitoring–mass spectrometry (MRM-MS) assay to quantify AFP-L3 in serum. METHODS The assay entailed the addition of a stable isotope-labeled internal standard protein analog, the enrichment of AFP using a monoclonal antibody, the fractionation of AFP-L3 using L. culinaris agglutinin lectin, deglycosylation, trypsin digestion, online desalting, and MRM-MS analysis. The performance of the MRM-MS assay was compared with that of LiBA in 400 human serum samples (100 chronic hepatitis, 100 liver cirrhosis, and 200 HCC). Integrated multinational guidelines were followed to validate the assay for clinical implementation. RESULTS The lower limit of quantification of the MRM-MS assay (0.051 ng/mL) for AFP-L3 was less than that of LiBA (0.300 ng/mL). Thus, AFP-L3, which was not observed by LiBA in HCC samples (n = 39), was detected by the MRM-MS assay, improving the clinical value of AFP-L3 as a biomarker by switching to a more analytical sensitive platform. The method was validated, meeting all the criteria in integrated multinational guidelines. CONCLUSIONS Because of the lower incidence of false-negative findings, the MRM-MS assay is more suitable than LiBA for early detection of HCC.


2017 ◽  
Vol 33 (7) ◽  
pp. 863-867 ◽  
Author(s):  
Maya KAMAO ◽  
Yoshihisa HIROTA ◽  
Yoshitomo SUHARA ◽  
Naoko TSUGAWA ◽  
Kimie NAKAGAWA ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document