scholarly journals Synthesis of Poly(lactic acid)-block-poly(N,N-dimethylaminoethyl methacrylate) Copolymers with Controllable Block Structures via Reversible Addition Fragmentation Polymerization from Aminolyzed Poly(lactic acid)

2018 ◽  
Vol 2018 ◽  
pp. 1-9
Author(s):  
Wenwen Yu ◽  
Lijing Zhu ◽  
Jiangao Shi ◽  
Cunting Zhao

Poly(lactic acid)-block-poly(N,N-dimethylaminoethyl methacrylate) (PLA-PDMAEMA) copolymers were synthesized from aminolyzed PLA via reversible addition fragmentation (RAFT) polymerization. PLA undergoes aminolytic degradation with ethylenediamine (EDA). The kinetics of the aminolysis reaction of PLA at different temperatures and EDA concentrations was investigated in detail. The molar masses of products rapidly decreased in the initial stage at low aminolytic degree. Meanwhile, reactive –NH2 and –OH groups were introduced to the end of shorter PLA chains and used as sites to further immobilize the RAFT agent. PLA-PDMAEMA block copolymers were synthesized. A pseudo-first-order reaction kinetics was observed for the RAFT polymerization of PDMAEMA at a low conversion. By controlling the aminolysis reaction of PLA and RAFT polymerization degree of DMAEMA, the length distributions of the PLA and PDMAEMA blocks can be controlled. This method can be extended to more systems to obtain block copolymers with controllable block structure.

Molecules ◽  
2020 ◽  
Vol 25 (21) ◽  
pp. 5147
Author(s):  
Wanting Hou ◽  
Ruiqi Liu ◽  
Siwei Bi ◽  
Qian He ◽  
Haibo Wang ◽  
...  

Due to a strong retardation effect of o-nitrobenzyl ester on polymerization, it is still a great challenge to prepare amphiphilic block copolymers for polymersomes with a o-nitrobenzyl ester-based hydrophobic block. Herein, we present one such solution to prepare amphiphilic block copolymers with pure poly (o-nitrobenzyl acrylate) (PNBA) as the hydrophobic block and poly (N,N’-dimethylacrylamide) (PDMA) as the hydrophilic block using bulk reversible addition-fragmentation chain transfer (RAFT) polymerization of o-nitrobenzyl acrylate using a PDMA macro-RAFT agent. The developed amphiphilic block copolymers have a suitable hydrophobic/hydrophilic ratio and can self-assemble into photoresponsive polymersomes for co-loading hydrophobic and hydrophilic cargos into hydrophobic membranes and aqueous compartments of the polymersomes. The polymersomes demonstrate a clear photo-responsive characteristic. Exposure to light irradiation at 365 nm can trigger a photocleavage reaction of o-nitrobenzyl groups, which results in dissociation of the polymersomes with simultaneous co-release of hydrophilic and hydrophobic cargoes on demand. Therefore, these polymersomes have great potential as a smart drug delivery nanocarrier for controllable loading and releasing of hydrophilic and hydrophobic drug molecules. Moreover, taking advantage of the conditional releasing of hydrophilic and hydrophobic drugs, the drug delivery system has potential use in medical applications such as cancer therapy.


2013 ◽  
Vol 66 (12) ◽  
pp. 1564 ◽  
Author(s):  
Lily A. Dayter ◽  
Kate A. Murphy ◽  
Devon A. Shipp

A single reversible addition–fragmentation chain transfer (RAFT) agent, malonate N,N-diphenyldithiocarbamate (MDP-DTC) is shown to successfully mediate the polymerization of several monomers with greatly differing reactivities in radical/RAFT polymerizations, including both vinyl acetate and styrene. The chain transfer constants (Ctr) for MDP-DTC for both these monomers were evaluated; these were found to be ~2.7 in styrene and ~26 in vinyl acetate, indicating moderate control over styrene polymerization and good control of vinyl acetate polymerization. In particular, the MDP-DTC RAFT agent allowed for the synthesis of block copolymers of these two monomers without the need for protonation/deprotonation switching, as has been previously developed with N-(4-pyridinyl)-N-methyldithiocarbamate RAFT agents, or other end-group transformations. The thermal properties of the block copolymers were studied using differential scanning calorimetry, and those with sufficiently high molecular weight and styrene composition appear to undergo phase separation. Thus, MDP-DTC may be useful for the production of other block copolymers consisting of monomers with highly dissimilar reactivities.


Polymers ◽  
2020 ◽  
Vol 12 (6) ◽  
pp. 1253
Author(s):  
Gordana Siljanovska Petreska ◽  
Christof van Sluijs ◽  
Clemens Auschra ◽  
Maria Paulis

AB diblock waterborne copolymers made of styrene (St) and 2-ethylhexyl acrylate (2EHA) were synthesized by means of two-step reversible addition fragmentation chain transfer (RAFT) (mini)emulsion polymerization. Monofunctional asymmetric RAFT agent was used to initiate the polymerization. The hard polystyrene “A” block was synthesized via miniemulsion polymerization followed by 2EHA pre-emulsion feeding to form the soft “B” block. Polymerization kinetics and the evolution of the molecular weight distribution were followed during synthesis of both initial and final block copolymers. DSC measurements of the block copolymers revealed the existence of two glass transition temperatures (Tgs) and thus the occurrence of two-phase systems. Microscopic techniques (atomic force microscopy (AFM) and transmission electron microscopy (TEM)) were used to study the phase separation within the particles in the latex form, after film formation at room temperature cast directly from the latex and after different post-treatments well above the Tg of the hard-polystyrene domains, when complete particle coalescence had occurred. The morphological differences observed after different annealing temperatures were correlated with the mechanical properties analyzed by DMTA measurements. Finally, the differences found in the mechanical properties of the block copolymers annealed at different temperatures were correlated to their heat seal application results.


2011 ◽  
Vol 89 (3) ◽  
pp. 317-325 ◽  
Author(s):  
Binxin Li ◽  
Daniel Majonis ◽  
Peng Liu ◽  
Mitchell A. Winnik

We describe the synthesis of an end-functionalized copolymer of N-(2-hydroxypropyl)methacrylamide (HPMA) and N-hydroxysuccinimide methacrylate (NMS) by reversible addition–fragmentation chain transfer (RAFT) polymerization. To control the polymer composition, the faster reacting monomer (NMS) was added slowly to the reaction mixture beginning 30 min after initating the polymerization (ca. 16% HPMA conversion). One RAFT agent, based on azocyanopentanoic acid, introduced a –COOH group to the chain at one end. Use of a different RAFT agent containing a 4-amino-1,8-naphthalimide dye introduced a UV–vis absorbing and fluorescent group at this chain end. The polymers obtained had molecular weights of 30 000 and 20 000, respectively, and contained about 30 mol% NMS active ester groups.


2006 ◽  
Vol 59 (10) ◽  
pp. 719 ◽  
Author(s):  
Christopher Barner-Kowollik ◽  
Thomas P. Davis ◽  
Martina H. Stenzel

Various pathways to generate star polymers using reversible addition–fragmentation transfer (RAFT) are discussed. Similar to other polymerization techniques, star polymers can be generated using arm-first and core-first approaches. Unique to the RAFT process is the subdivision of the core-first approach into the R-group and Z-group approaches, depending on the attachment of the RAFT agent to the multifunctional core. The mechanism of the R- and Z-group approaches are discussed in detail and it is shown that both techniques have to overcome difficulties arising from termination reactions. Termination reactions were found to broaden the molecular weight. However, these side reactions can be limited by careful design of the synthesis. Considerations include RAFT and radical concentration, number of arms, type of RAFT agent and monomer. Despite obvious challenges, the RAFT process is highly versatile, allowing the synthesis of novel polymer architectures such as poly(vinyl acetate) and poly(vinyl pyrrolidone) star polymers.


2019 ◽  
Vol 1 (12) ◽  
pp. 3354-3365
Author(s):  
Neha Mulchandani ◽  
Arvind Gupta ◽  
Kazunari Masutani ◽  
Sachin Kumar ◽  
Shinichi Sakurai ◽  
...  

2020 ◽  
Vol 59 (31) ◽  
pp. 13956-13968
Author(s):  
Hai Jiang ◽  
Yingli Ding ◽  
Juyang Liu ◽  
Arun Alagarsamy ◽  
Li Pan ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document