scholarly journals Anti-Inflammatory Effect of a Polyphenol-Enriched Fraction from Acalypha wilkesiana on Lipopolysaccharide-Stimulated RAW 264.7 Macrophages and Acetaminophen-Induced Liver Injury in Mice

2018 ◽  
Vol 2018 ◽  
pp. 1-17 ◽  
Author(s):  
Hongtan Wu ◽  
Haiyue Pang ◽  
Yupei Chen ◽  
Lisen Huang ◽  
Huaxin Liu ◽  
...  

A polyphenol-enriched fraction (PEF) from Acalypha wilkesiana, whose leaves have been traditionally utilized for the treatment of diverse medical ailments, was investigated for the anti-inflammatory effect and molecular mechanisms by using lipopolysaccharide- (LPS-) stimulated RAW 264.7 macrophages and acetaminophen- (APAP-) induced liver injury mouse model. Results showed that PEF significantly attenuated LPS-induced nitric oxide (NO) and prostaglandin E2 (PGE2) production and suppressed the expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase (COX-2) in RAW 264.7 macrophages. PEF also reduced the secretion of proinflammatory cytokines including tumor necrosis factor-α (TNF-α), interleukin- (IL-) 1β, and IL-6 in LPS-stimulated RAW 264.7 macrophages. Moreover, PEF potently inhibited LPS-induced phosphorylation of mitogen-activated protein kinases (MAPKs) as well as the activation of nuclear factor-κB (NF-κB) by preventing the degradation of inhibitor κB-α (IκB-α). In vivo, PEF pretreatment ameliorated APAP-induced liver injury and hepatic inflammation, as presented by decreased hepatic damage indicators and proinflammatory factors at both plasma and gene levels. Additionally, PEF pretreatment remarkably diminished Toll-like receptor 3 (TLR3) and TLR4 expression and the subsequent MAPKs and NF-κB activation. HPLC analysis revealed that two predominantly polyphenolic compounds present in PEF were geraniin and corilagin. These results indicated that PEF has an anti-inflammatory effect, and its molecular mechanisms may be involved in the inactivation of the TLR/MAPK/NF-κB signaling pathway, suggesting the therapeutic potential of PEF for inflammatory diseases.

2018 ◽  
Vol 13 (5) ◽  
pp. 1934578X1801300
Author(s):  
You Chul Chung ◽  
Sung-Min Park ◽  
Jin Hwa Kim ◽  
Geun Soo Lee ◽  
Jung No Lee ◽  
...  

The Trifolium pratense L. (red clover), which blossoms, leaves and stems can be used as medicines for treatment of burns, skin diseases, diabetes and other diseases. Recently study shown that pratol (7-hydroxy-4-methoxyflavone), an O-methylated flavone in T. pratense has been evaluated to induce melanogenesis in B16F10 melanoma cells. However, the anti-inflammatory effect of pratol has not been reported. In this study, we investigated the effects of pratol on anti-inflammation. We also studied the mechanism of action of pratol in LPS-stimulated RAW 264.7 cells. The cells were treated with various concentration of pratol (25, 50, or 100 μM) and 25 μM ammonium pyrrolidinedithiocarbamate (APDC) was used as control. The results in LPS-stimulated RAW 264.7 cells showed that pratol significantly reduced nitric oxide (NO) and prostaglandin E2 (PGE2) production without any cytotoxic. In addition, pratol strongly decreased the expression of inducible nitric oxide synthase (iNOS) and cyclooygenase (COX-2). Furthermore, pratol reduced proinflammatory cytokines such as tumour necrosis factor (TNF)-α, interleukin (IL)-1β and IL-6. We also found that pratol strongly inhibited activation of nuclear factor kappa B (NF-κB) by reducing the p65 phosphorylation and protecting inhibitory factor kappa B alpha (IκBα) degradation. The results suggest that, pratol may be used to treat or prevent inflammatory diseases such as dermatitis, arthritis, cardiovascular and cancer.


2013 ◽  
Vol 2013 ◽  
pp. 1-11 ◽  
Author(s):  
Min-Ji Bak ◽  
Van Long Truong ◽  
Hey-Sook Kang ◽  
Mira Jun ◽  
Woo-Sik Jeong

In the present study, the anti-inflammatory effect and underlying mechanisms of wild grape seeds procyanidins (WGP) were examined using lipopolysaccharide- (LPS-) stimulated RAW 264.7 cells. We used nitric oxide (NO) and prostaglandin E2(PGE2) and reactive oxygen species (ROS) assays to examine inhibitory effect of WGP and further investigated the mechanisms of WGP suppressed LPS-mediated genes and upstream expression by Western blot and confocal microscopy analysis. Our data indicate that WGP significantly reduced NO, PGE2, and ROS production and also inhibited the expression of proinflammatory mediators such as inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) protein expressions. Consistently, WGP significantly reduced LPS-stimulated expression of proinflammatory cytokines such as tumor necrosis factorα(TNF-α) and interleukin- (IL-) 1β. Moreover, WGP prevented nuclear translocation of nuclear factor-κB (NFκB) p65 subunit by reducing inhibitoryκB-α(IκBα) and NFκB phosphorylation. Furthermore, we found that WGP inhibited LPS-induced phosphorylation of p38 mitogen-activated protein kinase (MAPK). Taken together, our results demonstrated that WGP exerts potent anti-inflammatory activity through the inhibition of iNOS and COX-2 by regulating NFκB and p38 MAPK pathway.


2020 ◽  
Vol 15 (4) ◽  
pp. 1934578X2092048 ◽  
Author(s):  
Hyun-Kyu Kang ◽  
Chang-Gu Hyun

Recently, additional therapeutic potentials of classical antibiotics are gaining considerable attention. The discovery of penicillin in the 1920s had a major impact on the history of human health. Penicillin has been used for the treatment for fatal microbial infections in humans and has led to the discovery of several new antibiotics. d-(+)-Cycloserine (DCS) is an antibiotic isolated from Streptomyces orchidaceous and is used in conjunction with other drugs in the treatment of tuberculosis. However, there have been no studies on the anti-inflammatory effects of DCS in RAW 264.7 macrophage cell line. To investigate the anti-inflammatory effects of DCS, we examined the ability of DCS to inhibit the inflammatory responses in lipopolysaccharide (LPS)-induced RAW 264.7 macrophages in this study. Cell viability was analyzed using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. The cells were pretreated with various concentrations (2, 4, and 6 mM) of DCS, then treated with 1 μg/mL LPS to detect its anti-inflammatory effects. d-(+)-Cycloserine inhibited the production of nitric oxide (NO) in a concentration-dependent manner, and to some extent, inhibited the production of prostaglandin E2. Consistent with these findings, DCS suppressed the expression of pro-inflammatory cytokines such as interleukin (IL)-1β and IL-6. However, it had no effect on the expression of tumor necrosis factor-α. Western blot analysis demonstrated that DCS inhibited inducible nitric oxide synthase and suppressed cyclooxygenase type-2 (COX-2) expression. In addition, investigation of its effects on nuclear factor kappa B signaling showed that DCS inhibited phosphorylation of inhibitory kappa B-α (IκB-α) and increased intracellular IκB-α in a concentration-dependent manner. Furthermore, DCS inhibited the phosphorylation of LPS-induced extracellular signal-regulated kinase, however it did not affect phosphorylation of c-jun N-terminal kinase and p38. Further studies confirmed that the inhibition of phosphorylation of IκB-α was mediated through the inhibition of phosphoinositide 3-kinase/Akt (PI3K/Akt) pathway. To determine the applicability of DCS to the skin, cytotoxicity on HaCaT keratinocytes was measured following treatment with various concentrations (2, 4, 6, 8, and 10 mM) of DCS using MTT assay. These results suggest that DCS may be used as a potential drug for the treatment of inflammatory diseases.


2021 ◽  
Vol 23 (1) ◽  
pp. 92
Author(s):  
Thanasekaran Jayakumar ◽  
Kao-Chang Lin ◽  
Chao-Chien Chang ◽  
Chih-Wei Hsia ◽  
Manjunath Manubolu ◽  
...  

Studies have discovered that different extracts of Evodia rutaecarpa and its phytochemicals show a variety of biological activities associated with inflammation. Although rutaecarpine, an alkaloid isolated from the unripe fruit of E. rutaecarpa, has been exposed to have anti-inflammatory properties, the mechanism of action has not been well studied. Thus, this study investigated the molecular mechanisms of rutaecarpine (RUT) in lipopolysaccharide (LPS)-induced RAW 264.7 macrophages. RUT reserved the production of nitric oxide (NO) and the expression of inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), tumor necrosis factor (TNF-α), and interleukin (IL)-1β in the LPS-induced macrophages. RUT showed an inhibitory effect on the mitogen-activated protein kinases (MAPKs), and it also inhibited nuclear transcription factor kappa-B (NF-κB) by hindering IκBα and NF-κB p65 phosphorylation and p65 nuclear translocation. The phospho-PI3K and Akt was concentration-dependently suppressed by RUT. However, RUT not only suggestively reduced the migratory ability of macrophages and their numbers induced by LPS but also inhibited the phospho-Src, and FAK. Taken together, these results indicate that RUT participates a vital role in the inhibition of LPS-induced inflammatory processes in RAW 264.7 macrophages and that the mechanisms involve PI3K/Akt and MAPK-mediated downregulation of NF-κB signaling pathways. Notably, reducing the migration and number of cells induced by LPS via inhibiting of Src/FAK pathway was also included to the anti-inflammatory mechanism of RUT. Therefore, RUT may have potential benefits as a therapeutic agent against chronic inflammatory diseases.


2017 ◽  
Vol 2017 ◽  
pp. 1-13 ◽  
Author(s):  
Soo Chil Lee ◽  
Young-Won Kwon ◽  
Ju-Yeon Park ◽  
Sung Yun Park ◽  
Ju-Hee Lee ◽  
...  

SC-E3 is a novel herbal formula composed of five oriental medicinal herbs that are used to treat a wide range of inflammatory diseases in Korean traditional medicine. In this study, we sought to determine the effects of SC-E3 on free radical generation and inflammatory response in lipopolysaccharide- (LPS-) treated RAW 264.7 macrophages and the molecular mechanism involved. The ethanol extract of SC-E3 showed good free radical scavenging activity and inhibited LPS-induced reactive oxygen species generation. SC-E3 significantly inhibited the production of the LPS-induced inflammatory mediators, nitric oxide and prostaglandin E2, by suppressing the expressions of inducible nitric oxide synthase and cyclooxygenase-2, respectively. SC-E3 also prevented the secretion of the proinflammatory cytokines, IL-1β, TNF-α, and IL-6, and inhibited LPS-induced NF-κB activation and the mitogen-activated protein kinase (MAPK) pathway. Furthermore, SC-E3 induced the expression of heme oxygenase-1 (HO-1) by promoting the nuclear translocation and transactivation of Nrf2. Taken together, these results suggest that SC-E3 has potent antioxidant and anti-inflammatory effects and that these effects are due to the inhibitions of NF-κB and MAPK and the induction of Nrf2-mediated HO-1 expression in macrophages. These findings provide scientific evidence supporting the potential use of SC-E3 for the treatment and prevention of various inflammatory diseases.


2012 ◽  
Vol 2012 ◽  
pp. 1-11 ◽  
Author(s):  
You-Chang Oh ◽  
Won-Kyung Cho ◽  
Yun Hee Jeong ◽  
Ga Young Im ◽  
Aeyung Kim ◽  
...  

KIOM-MA was recently reported as a novel herbal medicine effective for atopic dermatitis and asthma. In this study, we have demonstrated the inhibitory effect of KIOM-MA on proinflammatory mediator produced in lipopolysaccharide (LPS)-stimulated RAW 264.7 cells. KIOM-MA significantly inhibited the expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) as well as nitric oxide (NO) and prostaglandin E2(PGE2). Consistent with the inhibitory effect on PGE2, KIOM-MA suppresses the LPS-induced migration of macrophages and gelatinase activity and the expression of matrix metalloprotease-9 (MMP-9) in a dose-dependent manner. Additionally, KIOM-MA showed a strong suppressive effect on the inflammatory cytokines production such as tumor necrosis factor-α(TNF-α) and interleukin-6 (IL-6). We also found that KIOM-MA inhibits the activation of nuclear factor-κB (NF-κB) and represses the activity of extracellular signal-regulated kinase (ERK), p38, and c-Jun NH2-terminal kinase (JNK) mitogen-activated protein kinases (MAPKs). Taken together, we elucidated the mechanism of anti-inflammatory effect of KIOM-MA using RAW 264.7 cells stimulated by LPS.


Marine Drugs ◽  
2021 ◽  
Vol 19 (5) ◽  
pp. 277
Author(s):  
Lei Wang ◽  
Hye-Won Yang ◽  
Ginnae Ahn ◽  
Xiaoting Fu ◽  
Jiachao Xu ◽  
...  

In the present study, the in vitro and in vivo anti-inflammatory effects of the sulfated polysaccharides isolated from Sargassum fulvellum (SFPS) were evaluated in lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophages and zebrafish. The results indicated that SFPS improved the viability of LPS-stimulated RAW 264.7 macrophages from 80.02 to 86.80, 90.09, and 94.62% at the concentration of 25, 50, and 100 µg/mL, respectively. Also, SFPS remarkably and concentration-dependently decreased the production levels of inflammatory molecules including nitric oxide (NO), tumor necrosis factor-alpha, prostaglandin E2, interleukin-1 beta, and interleukin-6 in LPS-treated RAW 264.7 macrophages. In addition, SFPS significantly inhibited the expression levels of cyclooxygenase-2 and inducible nitric oxide synthase in LPS-treated RAW 264.7 macrophages. Furthermore, the in vivo test results indicated that SFPS improved the survival rate of LPS-treated zebrafish from 53.33 to 56.67, 60.00, and 70.00% at the concentration of 25, 50, and 100 µg/mL, respectively. In addition, SFPS effectively reduced cell death, reactive oxygen species, and NO levels in LPS-stimulated zebrafish. Taken together, these results suggested that SFPS possesses strong in vitro and in vivo anti-inflammatory activities, and could be used as an ingredient to develop anti-inflammatory agents in the functional food and pharmaceutical industries.


2021 ◽  
Vol 22 (13) ◽  
pp. 6894
Author(s):  
Mei Tong He ◽  
Hye Sook Park ◽  
Young Sil Kim ◽  
Ah Young Lee ◽  
Eun Ju Cho

Recently, adipose-derived stem cells (ADSCs) are considered to be ideal for application in cell therapy or tissue regeneration, mainly due to their wide availability and easy access. In this study, we examined the anti-inflammatory effects of membrane-free stem cell extract (MFSC-Ex) derived from ADSCs against lipopolysaccharide (LPS)/interferon-gamma (IFN-γ) on RAW 264.7 macrophage cells. Exposure of RAW macrophages to LPS and IFN-γ stimuli induced high levels of nitric oxide (NO), cyclooxygenase-2 (COX-2), and prostaglandin E2 (PGE2) production. However, pretreatment with MFSC-Ex inhibited LPS/IFN-γ-induced these pro-inflammatory mediators. To clarify the molecular mechanisms underlying the anti-inflammatory property of MFSC-Ex, we analyzed nuclear factor-kappa B (NF-κB) and mitogen-activated protein kinases (MAPKs) protein expressions by Western blotting. Our study showed that treatment of MFSC-Ex significantly down-regulated inducible nitric oxide synthase (iNOS) and COX-2 protein expressions. Furthermore, phosphorylation of extracellular signal-regulated kinase (ERK) and p38 was also blocked by treatment with MFSC-Ex, indicating that inhibitory effect of MFSC-Ex on MAPK signaling cascade may attribute to inactivation of NF-κB. From these findings, we suggest that MFSC-Ex exert anti-inflammatory activities, which suppressed LPS/IFN-γ-induced production of NO, COX-2 and PGE2 by regulation of NF-κB and MAPK signaling pathway in RAW 264.7 macrophages. In conclusion, MFSC-Ex might provide a new therapeutic opportunity to treatment of inflammatory-related diseases.


2010 ◽  
Vol 48 (8-9) ◽  
pp. 2045-2051 ◽  
Author(s):  
Soo-Jin Heo ◽  
Weon-Jong Yoon ◽  
Kil-Nam Kim ◽  
Gin-Nae Ahn ◽  
Sung-Myung Kang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document