scholarly journals Optimization of the Physical and Mechanical Properties of a Spline Surface Fabricated by High-Speed Cold Roll Beating Based on Taguchi Theory

2018 ◽  
Vol 2018 ◽  
pp. 1-12 ◽  
Author(s):  
Fengkui Cui ◽  
Yongxiang Su ◽  
Shaoke Xu ◽  
Fei Liu ◽  
Guolin Yao

The aim of this work is to control the physical and mechanical properties of a spline surface and achieve a reasonable choice of high-speed cold roll-beating processing parameters. The surface residual stress and surface work hardening at the indexing circle serve as the main evaluation indices of the physical and mechanical properties of the spline surface. The influence degree of the processing parameters on each evaluation index is analyzed using Taguchi theory. An optimized model for improving the Taguchi process capability index that combines Taguchi theory with entropy theory is established, and the integral process capacity index is optimized via the generalized price reduction gradient method. The results of the optimization and the verification test are implemented in a high-speed cold roll forming test for comparison. The results show that the influence of processing parameters on the physical and mechanical properties of the splash surface of the cold roll can be ordered as follows: feed rate > roll round radius > cold roll-beating speed. In addition, the spline surface physical and mechanical properties of the optimal processing parameters were obtained for the combination of a cold rolling speed of 1581 r/mm, feed rate of 42 mm/min, and roll round radius of 2 mm.

2018 ◽  
Vol 2018 ◽  
pp. 1-10
Author(s):  
Fengkui Cui ◽  
Yongxiang Su

Surface roughness, residual stress, and work hardening are the key parameters characterizing the mechanical properties of a spline surface after undergoing cold roll-beating. A comprehensive optimization of the mechanical properties of such surfaces has not been previously reported. To improve the performance of the spline surface, gray theory is used to study the relationships between the surface roughness, residual stress, and work hardening in the pitch diameter of spline teeth. This method addresses the surface performance optimization of an involute spline as influenced by the cold roll-beating speed and feed rate as the main parameters during the cold roll-beating process. The results show that the surface roughness and hardening degree of the splines increase with an increasing feed rate but decrease with an increasing cold roll-beating speed; the residual stress of the spline decreases with an increasing feed rate and increases with an increasing cold roll-beating speed. The results also show that the feed rate has a strong influence on the surface performance of splines produced by cold roll-beating. The optimal process parameters in terms of the spline surface performance are a cold roll-beating speed of 1428 r/min and a feed rate of 42 mm/min. The results of the present work emphasize the significance of improving the surface performance of the cold roll-beating spline-forming process and determining the optimal process parameters.


2018 ◽  
Vol 2018 ◽  
pp. 1-7 ◽  
Author(s):  
F. K. Cui ◽  
F. Liu ◽  
Y. X. Su ◽  
X. L. Ruan ◽  
S. K. Xu ◽  
...  

Surface performance is an important indicator of the performance of cold roll-beating spline processing. To obtain the best cold roll spline surface performance (surface roughness, residual stress, and surface hardening degree), multiobjective optimal process parameters must be determined. To this end, this paper takes the cold roll-beating spline as the object of study and carries out a cold roll-beating spline surface performance test study. An ideal algorithm for entropy weight is constructed, and the multiobjective decision of the cold roll-beating spline surface performance is determined by using the entropy weight ideal point algorithm, providing a decision on the cold roll-beating spline processing parameters. The grey correlation algorithm is used for verification, and the results show that the multiobjective decision of the cold roll-beating spline surface performance is feasible by using the constructed entropy weight ideal point algorithm.


2016 ◽  
Vol 2016 ◽  
pp. 1-14 ◽  
Author(s):  
Zhenyu Han ◽  
Shouzheng Sun ◽  
Zhongxi Shao ◽  
Hongya Fu

Processing optimization is an important means to inhibit manufacturing defects efficiently. However, processing optimization used by experiments or macroscopic theories in high-speed automated fiber placement (AFP) suffers from some restrictions, because multiscale effect of laying tows and their manufacturing defects could not be considered. In this paper, processing parameters, including compaction force, laying speed, and preheating temperature, are optimized by multiscale collaborative optimization in AFP process. Firstly, rational model between cracks and strain energy is revealed in order that the formative possibility of cracks could be assessed by using strain energy or its density. Following that, an antisequential hierarchical multiscale collaborative optimization method is presented to resolve multiscale effect of structure and mechanical properties for laying tows or cracks in high-speed automated fiber placement process. According to the above method and taking carbon fiber/epoxy tow as an example, multiscale mechanical properties of laying tow under different processing parameters are investigated through simulation, which includes recoverable strain energy (ALLSE) of macroscale, strain energy density (SED) of mesoscale, and interface absorbability and matrix fluidity of microscale. Finally, response surface method (RSM) is used to optimize the processing parameters. Two groups of processing parameters, which have higher desirability, are obtained to achieve the purpose of multiscale collaborative optimization.


2011 ◽  
Vol 399-401 ◽  
pp. 864-868
Author(s):  
Han Qiao Liu ◽  
Guo Xia Wei ◽  
Yin Liang ◽  
Jun Lan Yang

The glass-ceramics were made of arc-melting slag from incinerator fly ash mixed with glass cullet additive by sintering method. The effects of ball milling time and powder compaction pressure on the microstructure, physical and mechanical properties of the glass–ceramics were respectively investigated. Results showed that with milling time delaying, granularity of the parent glass evidently reduces, the major phases of glass–ceramics have no change but the diffraction peaks present intensive trend, the crystal sizes of glass–ceramics decrease, the properties such as volumetric densities, compressive strength, bending strength and toughness are improved, the appropriate milling time is 6h with fifty percent of the volume (d50 value) of 10.62μm. The physical and mechanical properties first increase and then decrease with compaction pressure increasing, and the optimal compaction pressure is 60MPa.


Author(s):  
E. V. Petrov ◽  
V. S. Trofimov ◽  
V. O. Kopytskiy

The surface layer of an obstacle made of U8 steel is investigated after high-speed exposure to a flow of powder particles. After analyzing the frames of high-speed photography, the average velocities of movement of particles of tungsten and titanium carbide powders were determined. It is shown that the shock-wave loading of the barrier material and the effect of particles accelerated by the explosion energy provide a change in the physical and mechanical properties of the surface and the volume of the steel barrier material.


2017 ◽  
Vol 2017 ◽  
pp. 1-21 ◽  
Author(s):  
Z. H. Ding ◽  
F. K. Cui ◽  
Y. B. Liu ◽  
Y. Li ◽  
K. G. Xie

Residual stress is an important parameter in the evaluation of the performance of a cold rolling spline surface. However, research on cold rolling spline is rare. To improve the surface property of a spline, an involute spline is selected as the object of this study. The contour method for determining cold roll-beating residual stress involves measuring the force spatial distribution, performing a statistical analysis of the experimental results, establishing the parameters for the tooth profile for different positions (dedendum, pitch, and addendum) of residual stress, and determining the effect of pressure on the relationship between stress and the depth of the cold roll-beating. A response surface method is used to establish the spline tooth profile of the dedendum, pitch, and addendum of the residual stress and different depths of the stress layer to obtain the parameters of a multiple regression model and perform a comparative analysis of the experimental and prediction results. Research indicates that the prediction results have high reliability. The establishment of this model has important guiding significance to control the residual stress in the cold roll-beating forming process, optimize the cold roll-beating processing parameters, and improve the surface properties of cold rolling spline.


2019 ◽  
Vol 37 (5A) ◽  
pp. 181-187
Author(s):  
Jenan S. Kashan

This work take in consideration the application of Taguchi optimization methodology in optimizing the parameters for processing (composition, compounding pressure) and their effects on the output physical (Density and true porosity) properties and mechanical(fracture strength and microhardness) properties for the Nano HA,Al2O3 fillers reinforced HDPE hybrid composite material for orthodontic application. An orthogonal array of the Taguchi approach was used to analyses the effect of the processing parameters on the physical and mechanical properties. On the other hand, the surface roughness and particle size distribution were also calculated to study their effect on the output properties. The result shows that the Taguchi approach can determine the best combination of processing parameters that can provide the optimal physical and mechanical conditions, which are the optimum values (the optimum composition was15HA/ 5Al2O3/80HDPE, and optimum compounding pressure was102 MPa.


Author(s):  
Kamardeen Olajide Abdulrahman ◽  
Esther T. Akinlabi ◽  
Rasheedat M. Mahamood

Three-dimensional printing has evolved into an advanced laser additive manufacturing (AM) process with capacity of directly producing parts through CAD model. AM technology parts are fabricated through layer by layer build-up additive process. AM technology cuts down material wastage, reduces buy-to-fly ratio, fabricates complex parts, and repairs damaged old functional components. Titanium aluminide alloys fall under the group of intermetallic compounds known for high temperature applications and display of superior physical and mechanical properties, which made them most sort after in the aeronautic, energy, and automobile industries. Laser metal deposition is an AM process used in the repair and fabrication of solid components but sometimes associated with thermal induced stresses which sometimes led to cracks in deposited parts. This chapter looks at some AM processes with more emphasis on laser metal deposition technique, effect of LMD processing parameters, and preheating of substrate on the physical, microstructural, and mechanical properties of components produced through AM process.


2015 ◽  
Vol 729 ◽  
pp. 114-118
Author(s):  
Ivan Nikolaevich Erdakov ◽  
Viktor Vladimirovich Novokreshchenov ◽  
Vladimir Michaylovich Tkachev ◽  
Ranil Danillovich Gabbasov

The paper presents the results of experimental studies of physical and mechanical properties of casting cores (-set process using Carbectis binder) high-speed heated with subsequent destruction. Based on experimental data, such parameters of deformation model of a core are obtained which permit to calculate the values of hindered shrinkage of AK7Ch alloy with the accuracy of 1.5 %.


Sign in / Sign up

Export Citation Format

Share Document