scholarly journals Surface Performance Multiobjective Decision of a Cold Roll-Beating Spline with the Entropy Weight Ideal Point Method

2018 ◽  
Vol 2018 ◽  
pp. 1-7 ◽  
Author(s):  
F. K. Cui ◽  
F. Liu ◽  
Y. X. Su ◽  
X. L. Ruan ◽  
S. K. Xu ◽  
...  

Surface performance is an important indicator of the performance of cold roll-beating spline processing. To obtain the best cold roll spline surface performance (surface roughness, residual stress, and surface hardening degree), multiobjective optimal process parameters must be determined. To this end, this paper takes the cold roll-beating spline as the object of study and carries out a cold roll-beating spline surface performance test study. An ideal algorithm for entropy weight is constructed, and the multiobjective decision of the cold roll-beating spline surface performance is determined by using the entropy weight ideal point algorithm, providing a decision on the cold roll-beating spline processing parameters. The grey correlation algorithm is used for verification, and the results show that the multiobjective decision of the cold roll-beating spline surface performance is feasible by using the constructed entropy weight ideal point algorithm.

2018 ◽  
Vol 2018 ◽  
pp. 1-10
Author(s):  
Fengkui Cui ◽  
Yongxiang Su

Surface roughness, residual stress, and work hardening are the key parameters characterizing the mechanical properties of a spline surface after undergoing cold roll-beating. A comprehensive optimization of the mechanical properties of such surfaces has not been previously reported. To improve the performance of the spline surface, gray theory is used to study the relationships between the surface roughness, residual stress, and work hardening in the pitch diameter of spline teeth. This method addresses the surface performance optimization of an involute spline as influenced by the cold roll-beating speed and feed rate as the main parameters during the cold roll-beating process. The results show that the surface roughness and hardening degree of the splines increase with an increasing feed rate but decrease with an increasing cold roll-beating speed; the residual stress of the spline decreases with an increasing feed rate and increases with an increasing cold roll-beating speed. The results also show that the feed rate has a strong influence on the surface performance of splines produced by cold roll-beating. The optimal process parameters in terms of the spline surface performance are a cold roll-beating speed of 1428 r/min and a feed rate of 42 mm/min. The results of the present work emphasize the significance of improving the surface performance of the cold roll-beating spline-forming process and determining the optimal process parameters.


2018 ◽  
Vol 10 (6) ◽  
pp. 168781401878263 ◽  
Author(s):  
Fengkui Cui ◽  
Yongxiang Su ◽  
Xiaoqiang Wang ◽  
Xiang Yu ◽  
Xiaolin Ruan ◽  
...  

The work hardening of a spline during cold roll-beating is used as an indicator to evaluate the mechanical properties of the surface. To further optimize the work-hardening degree of a cold roll-beating spline surface, weight theory and satisfaction functions are used to improve the double-response surface-satisfaction function model. The model describes the involute spline based on the cold roll-beating speed and feed rate. The generalized reduced-order gradient method is applied to optimize the optimal combination of processing parameters. The experiments validate the optimization results of the improved double-response surface-satisfaction function method and the conventional response surface method based on the cold roll-beating spline test and a comparative analysis of the spline surface metallographic structure. The results show that the satisfaction degree of the improved response model is 0.87384, indicating that the model is robust and reliable. The optimized processing parameters are a cold roll speed of 1448.21 r/mm, a feed rate of 41.71 mm/min, and a degree of work hardening of 144.79%. The spline surface work-hardening degree based on the revised model is higher than that of the conventional model. Thus, the improved double-response surface-satisfaction function model provides better accuracy.


2018 ◽  
Vol 2018 ◽  
pp. 1-12 ◽  
Author(s):  
Fengkui Cui ◽  
Yongxiang Su ◽  
Shaoke Xu ◽  
Fei Liu ◽  
Guolin Yao

The aim of this work is to control the physical and mechanical properties of a spline surface and achieve a reasonable choice of high-speed cold roll-beating processing parameters. The surface residual stress and surface work hardening at the indexing circle serve as the main evaluation indices of the physical and mechanical properties of the spline surface. The influence degree of the processing parameters on each evaluation index is analyzed using Taguchi theory. An optimized model for improving the Taguchi process capability index that combines Taguchi theory with entropy theory is established, and the integral process capacity index is optimized via the generalized price reduction gradient method. The results of the optimization and the verification test are implemented in a high-speed cold roll forming test for comparison. The results show that the influence of processing parameters on the physical and mechanical properties of the splash surface of the cold roll can be ordered as follows: feed rate > roll round radius > cold roll-beating speed. In addition, the spline surface physical and mechanical properties of the optimal processing parameters were obtained for the combination of a cold rolling speed of 1581 r/mm, feed rate of 42 mm/min, and roll round radius of 2 mm.


2011 ◽  
Vol 201-203 ◽  
pp. 2447-2450
Author(s):  
Yao Yu ◽  
Xiao Ming Qian

In this paper, we focus on the need for researching the performance of clothing materials. It chose the knitting fabric to be the object of study, and took the performance tests, which include basic performance, style, comfort and clothing comfort. After that, it analysis that these three variables— “fibers”, “yarn properties” and “fabric performance”— influence clothing thermal-wet comfort. The statistic analyses include one-way ANOVE, correlation analysis and principal component analysis. Based on the contrastive analysis of test results, it can be gain the effect of these three variables on clothing comfort.


2021 ◽  
Vol 257 ◽  
pp. 02081
Author(s):  
Baozhong Ye ◽  
Jian Chen ◽  
Jing Zhao ◽  
Qingguang Zeng

In order to solve the problem of selection of human resource provider for the demander in package design project, firstly, the evaluation index system of provide side is established, and the entropy weight method is used to calculate the objective weight of the evaluation index; secondly, the subjective weight is solved by the five scale valuation method, and the comprehensive weight with subjective and objective significance is obtained; then, with the help of the ideal point method, the provide side is evaluated, which can provide a reference for the choice of the demander; finally, an example is given to verify the effectiveness and practicability of the method.


2017 ◽  
Vol 2017 ◽  
pp. 1-21 ◽  
Author(s):  
Z. H. Ding ◽  
F. K. Cui ◽  
Y. B. Liu ◽  
Y. Li ◽  
K. G. Xie

Residual stress is an important parameter in the evaluation of the performance of a cold rolling spline surface. However, research on cold rolling spline is rare. To improve the surface property of a spline, an involute spline is selected as the object of this study. The contour method for determining cold roll-beating residual stress involves measuring the force spatial distribution, performing a statistical analysis of the experimental results, establishing the parameters for the tooth profile for different positions (dedendum, pitch, and addendum) of residual stress, and determining the effect of pressure on the relationship between stress and the depth of the cold roll-beating. A response surface method is used to establish the spline tooth profile of the dedendum, pitch, and addendum of the residual stress and different depths of the stress layer to obtain the parameters of a multiple regression model and perform a comparative analysis of the experimental and prediction results. Research indicates that the prediction results have high reliability. The establishment of this model has important guiding significance to control the residual stress in the cold roll-beating forming process, optimize the cold roll-beating processing parameters, and improve the surface properties of cold rolling spline.


2008 ◽  
Vol 375-376 ◽  
pp. 364-368
Author(s):  
Da Ping Wan ◽  
Hong Bin Liu ◽  
De Jin Hu ◽  
Hai Feng Wang

The surface texture of sheet steel plays an important role for automotive applications. To achieve appropriate surface topographies and press-forming behaviour, a new laser coating texturing (LCT) technique aimed at texturing steel work-rolls was proposed. The laser texturing process was realized by applying laser pulses at very high repetition rates to produce innumerable micro-craters with the required shape profile on the surface of the rolls. Moreover, the surface alloying of the dimples was carried out on the substrates of bearing steel GCr15. The submicron WC-Co alloy metal powder was melted into the micro-craters by high laser energy. The effects of processing parameters on the properties of the laser textured samples were investigated. The dimpled surfaces were examined by a 3-dimensional surface profilometer. Microstructures of the coating layers were assessed by optical and scanning electron microscopy. The experimental investigations show that the laser-dimpled hard-coated surfaces exhibit compatible metallurgical interfaces with the substrates. The laser coating textured roll is demonstrated to have excellent abrasion resistance and a much longer service life. The abrasive wear resistance was 5 times higher than that of the substrates. The average surface microhardness values were as high as 700HV.


Sign in / Sign up

Export Citation Format

Share Document