scholarly journals A Gas Seepage Modeling Study for Mitigating Gas Accumulation Risk in Upper Protective Coal Seam Mining Process

Geofluids ◽  
2018 ◽  
Vol 2018 ◽  
pp. 1-11 ◽  
Author(s):  
Cun Zhang ◽  
Lei Zhang ◽  
Mingxue Li ◽  
Chen Wang

Protective coal seam mining (PCSM) is one of the most significant mitigation measures of regional outburst in the process of deep coal seam mining, which has high outburst risk in China. During the PCSM process, the phenomenon of methane concentration exceeding the limit usually occurs in the working face. It is vital to understand factors affecting gas emission from the protective seam working face (PSWF) and to obtain an equation for determining the quantity of gas emission. A gas seepage model (GSM) was developed to simulate the gas emission during the process of upper PCSM. In this study, an equation was formulated to determine the quantity of gas desorbed from the protected seam into PSWF. These equations have been developed by using Fick’s second law of diffusion and Darcy’s flow law. The relationship between permeability and stress was described in an elastic-plastic state, and the mechanics of surrounding rock were investigated. It can be concluded from GSM that the initial gas pressure of protected seam, the characteristics of interlayer rocks, and the ventilation pressure of PSWF were the main factors that influenced the desorption of gas emission from the protected seam into PSWF. The developed GSM was tested for calculating gas emission quantity from the PCSM process by utilizing the actual geological condition data of a coal mine, which is located in Hancheng, China. The results have shown great agreement with obtained field measurements, which is done by combining the fitting curve of ventilation air methane quantity for PSWF with an interlayer spacing. A loss coefficient (δ) of 1.012 × 10−3 was obtained in this study.

2019 ◽  
Vol 61 (1) ◽  
pp. 116-123
Author(s):  
Nguyen Phi Hung ◽  
Nguyen Cao Khai ◽  
Bui Manh Tung ◽  
Lai Quang Trung ◽  
Tran Van Thang ◽  
...  

Geological condition of 6# at Nam Mau coal mines is very complicated for mechanism longwall method, specialy was cause of is the cause of difficulties in moving hydraulic support, so it is necessary to have appropriate reform solutions for the support equipment to operate effectively. The result of dynamic field measurements at the site shows that the maximum support pressure is from 5 to 10 m in front of the mechanism longwall. The coal seam area is located close to the working face due to the influence of the support pressure and beyond the durable limit which was in an unconsolidated state, so it is possible to cause the mirror landslide and topping out. Calculation results show that the distance of 15 m against advance reinforcement at the junction of the furnace head and foot furnace as designed. The results of the study of the distribution of surrounding longwall face pressure, length of longwall need longer 40 meters.


2014 ◽  
Vol 1049-1050 ◽  
pp. 335-338 ◽  
Author(s):  
Fa Quan Liu ◽  
Xue Wen Geng ◽  
Yong Che ◽  
Xiang Cui

To get the maximum coal in front of the working face of the 17# coal seam, we installed a longer beam which is 1.2m in length in the leading end of the original working face supports ZF3000/17/28, and know that working face supports’ setting load and working resistance are lower .We changed the original supports with shield supports ZY3800/15/33 that are adaptable in the geological condition and got the favorable affection.


2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Feng Cui ◽  
Tinghui Zhang ◽  
Xiaoqiang Cheng

Rib spalling disaster at the coal mining faces severely restricted the safe and efficient output of coal resources. In order to solve this problem, based on the analysis of the current status of rib spalling in the three-soft coal seam 1508 Working Face of Heyang Coal Mine, a mechanical model of sliding-type rib spalling was established and the main influencing factors that affect rib spalling are given. The mechanism of grouting technology to prevent and control rib spalling has been theoretically analyzed. A similarity simulation experiment is used to analyze the change law of roof stress under the condition of three-soft coal seam mining. The optimal grouting pressure is determined by a numerical simulation experiment. And, silicate-modified polymer grouting reinforcement materials (SMPGMs) are used in field experiments. After twice grouting operations in the 1508 Working Face, the coal wall was changed from the original soft and extremely easy rib spalling to a straight coal wall and the amount of rib spalling has been reduced by 57.45% and 48.43, respectively. And, the mining height has increased by 0.16 m and 0.23 m, respectively. The experimental results show that the rib spalling disaster of the three-soft coal seam has been effectively controlled.


2021 ◽  
pp. 014459872110635
Author(s):  
Wei Zhao ◽  
Wei Qin

Coal mining results in strata movement and surrounding rock failure. Eventually, manual mining space will be occupied by the destructed coal rock, making it difficult to conduct field tests of the coal seam to explore gas seepage and transport patterns. Therefore, computational fluid dynamics (CFD) numerical computation is an important tool for such studies. From the aspect of gas pre-drainage, for layer-through boreholes in the floor roadway of the 8,406 working face in Yangquan Mine 5 in China, reasonable layout parameters were obtained by CFD optimization. For effectively controlling the scope of boreholes along coal seam 9 in the Kaiyuan Mine, CFD computation was performed. The results revealed that the horizontal spacing between boreholes should be ≤2 m when a tri-quincuncial borehole layout is used. Optimization of the surface well position layout for the fault structure zone in the Xinjing Mine of the Yangquan mining area indicated that the horizontal distance between the surface well and the fault plane should be <150 m. From the aspect of gas drainage with mining-induced pressure relief, CFD computation was performed for pressure-relieved gas transport in the K8205 working face of Yangquan Mine 3. The results showed that forced roof caving should be used before the overhang length of hard roof reaches 25 m in the K8205 working face to avoid gas overrun. From the aspect of gas drainage from the abandoned gob, surface well control scopes at different surface well positions were computed, and an O-ring fissure zone is proposed as a reasonable scope for the surface well layout. CFD computation has been widely applied to coal and gas co-extraction in the Yangquan mining area and has played a significant role in guiding related gas drainage engineering practice.


2018 ◽  
Vol 2018 ◽  
pp. 1-14 ◽  
Author(s):  
Jie Fang ◽  
Lei Tian ◽  
Yanyan Cai ◽  
Zhiguo Cao ◽  
Jinhao Wen ◽  
...  

The water inrush of a working face is the main hidden danger to the safe mining of underwater coal seams. It is known that the development of water-flowing fractured zones in overlying strata is the basic path which causes water inrushes in working faces. In the engineering background of the underwater mining in the Longkou Mining Area, the analysis model and judgment method of crack propagation were created on the basis of the Mohr–Coulomb criterion. Fish language was used to couple the extension model into the FLAC3d software, in order to simulate the mining process of the underwater coal seam, as well as to analyze the initiation evolutionary characteristics and seepage laws of the fractured zones in the overlying strata during the advancing processes of the working face. The results showed that, during the coal seam mining process, the mining fractured zones which had been caused by the compression-shear and tension-shear were mainly concentrated in the overlying strata of the working face. Also, the open-off cut and mining working face were the key sections of the water inrush in the rock mass. The condition of the water disaster was the formation of a water inrush channel. The possible water inrush channels in underwater coal mining are mainly composed of water-flowing fractured zones which are formed during the excavation processes. The numerical simulation results were validated through the practical engineering of field observations on the height of water-flowing fractured zone, which displayed a favorable adaptability.


2011 ◽  
Vol 255-260 ◽  
pp. 3780-3785 ◽  
Author(s):  
Lei Yu ◽  
Zhi Zhong Fan ◽  
Gang Xu

The mine pressure behavior characters of shallow buried coal seam differed from both shallow seam mining and general depth seam. Mine pressure observation and numerical analysis were applied to research mine pressure behavior laws in fully mechanized face of shallow buried coal seam with thick bedrock and thin alluvium. It showed that the ground subsidence level phenomenon did not appear obviously although with obvious dynamic loading of fully mechanized face during the pressure period. The appearance was due to non-synchronized fracture from two key layers in the overlying rock layers and their interaction, which leaded to roof breaking initially and caving rocks with the form of an arch. Due to the periodic breaking and caving characteristics appearing as fully cut-down and arch alternately, the periodic pressure of shallow buried coal seam face showed as different size. The conclusion could be a reference for similar working face control.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Feisheng Feng ◽  
Jiqiang Zhang ◽  
Zhen Yang ◽  
Dongdong Pang ◽  
Jing Zhang

The water burst of roof on working face has been one of the significant geotechnical engineering problems that needs to be urgently resolved. The coupling effects of seepage and damage on the amount and intensity of water inrush from the roof are critically important. In this paper, the seepage-damage coupling mathematical model of the aquifer in the working face is studied, and the seepage-damage coupling mechanics model at different stages of the aquifer is established. Under the coupling of permeability and damage, the water-soil characteristics of the aquifer in the 101163 working face of Mindong were numerically simulated by establishing the constitutive relation between vertical stress and permeability coefficient. The numerical results show that the stress concentration factor of the mining stress field gradually increases with the coal seam mining. The water-flowing fractured zone of the overburden is close to the communication of the quaternary aquifer. When the coal seam is excavated 250–300 m. Three free surfaces appear in the groundwater pressure field, and a large falling funnel is formed to establish a deep flow S-well well flow model. The research on the mining stress field and seepage field is carried out in combination with the Jakob formula. It is found that two sectors with reduced permeability of the fan surface are formed in front of the work. The variation law of the apocalyptic permeability infiltration under different mining distances, different coal seam thicknesses, different water pressures, and different roof management modes is studied systematically. The research indicates that the seepage flow under the condition of seepage infiltration of the lower aquifer should be between 50% and 100% of the traditional calculation method. The research results can help to deepen the understanding of the process of water inrush under the coupling of stress and seepage.


2011 ◽  
Vol 121-126 ◽  
pp. 2911-2916
Author(s):  
Guo Lei Liu ◽  
Ke Gong Fan ◽  
Tong Qiang Xiao

Through testing the mountainous shallow-buried coal seam mining working face strata behaviors in Faer mine field, it got the strata behaviors: it was of large roof pressure, high rate of safety valve opening in hydraulic support, and even some supports crushed or took separation between top beams and tail beams. Traditional method of calculating supports’ resistance can not be applied to mountainous shallow-buried coal seam mining working face. With the discrete element simulation software UDEC it analyzed the strata movement feature, and got that the overlying strata took collapse and horizontal displacement after mountainous shallow-buried coal seam mined, and the strata movement feature was different between reverse slope mining and positive slope mining.


2012 ◽  
Vol 600 ◽  
pp. 194-198 ◽  
Author(s):  
Ming Ming Wen

Studying on the characteristics of the overlying strata movement in high inclined coal seam, the similar material is applied in the simulation model which was built based on the similar material simulation theory and high inclined seam geological condition of Dongbaowei coal mine. The picture and displacement of overlying strata were obtained from the similar material simulation. As a result, the characteristics of the fracture and movement of overlying strata above the full mechanized working face in high inclined seam. This paper proposes some support measures to improve the safety of the working face. These provide significance theoretical guidance and reference value for other working face in high inclined seam.


Sign in / Sign up

Export Citation Format

Share Document