Characterization of Dissimilar Welded Joints Between Austenitic and Duplex Stainless Steel Grades for Liquid Tank Applications

Author(s):  
G. Ubertalli ◽  
M. Ferraris ◽  
P. Matteis ◽  
D. Di Saverio

Lean duplex stainless steels have similar corrosion and better mechanical properties than the austenitic grades, which ensure their extensive spreading in industrial applications as a substitute of austenitic grades. In the construction of liquid tanks, however, it is often necessary to weld such steels with a range of fittings which are commonly fabricated with austenitic stainless steel grades. Therefore, this paper examines dissimilar welded joints between LDX 2101 (or X2CrMnNiN22-5-2) lean duplex stainless steels plates and austenitic stainless steel pipes, carried out by different arc welding processes. The investigation focuses on the correlation between the welding procedures and the microstructural and mechanical properties of the welded joints.

Alloy Digest ◽  
1999 ◽  
Vol 48 (8) ◽  

Abstract ALZ 316 is an austenitic stainless steel with good formability, corrosion resistance, toughness, and mechanical properties. It is the basic grade of the stainless steels, containing 2 to 3% molybdenum. After the 304 series, the molybdenum-containing stainless steels are the most widely used austenitic stainless steels. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties. It also includes information on corrosion resistance as well as forming, heat treating, and joining. Filing Code: SS-756. Producer or source: ALZ nv.


2019 ◽  
Vol 944 ◽  
pp. 193-198
Author(s):  
Tian Yi Wang ◽  
Ren Bo Song ◽  
Heng Jun Cai ◽  
Jian Wen ◽  
Yang Su

The present study investigated the effect of cold rolling reduction on microstructure and mechanical properties of a 204C2 Cr–Mn austenitic stainless steel which contained 16%Cr, 2%Ni, 9%Mn and 0.083 %C). The 204C2 austenitic stainless steels were cold rolled at multifarious thickness reductions of 10%, 20%, 30%,40% and 50%, which were compared with the solution-treated one. Microstructure of them was investigated by means of optical microscopy, X-ray diffraction technique and scanning electron microscopy. For mechanical properties investigations, hardness and tensile tests were carried out. Results shows that the cold rolling reduction induced the martensitic transformation (γ→α ́) in the structure of the austenitic stainless steel. With the increase of the rolling reduction, the amount of strain-induced martensite increased gradually. Hardness, ultimate tensile strength and yield strength increased with the incremental rolling reduction in 204C2 stainless steels, while the elongation decreased. At the thickness reduction of 50%, the specimen obtained best strength and hardness. Hardness of 204C2 stain steel reached 679HV. Ultimate tensile strength reached 1721 MPa. Yield strength reached 1496 MPa.


2006 ◽  
Vol 513 ◽  
pp. 35-50
Author(s):  
K. Sikorski ◽  
Agnieszka Szymańska ◽  
M. Sekuła ◽  
D. Kowalczyk ◽  
Jan Kazior ◽  
...  

The aim of the study was to obtain a ferritic-austenitic stainless steel through sintering of the mixture of austenitic steel AISI 316L powders with silicon in the amount ranging from 1 to 7%. The pressed mixtures were sintered at 1240oC for 60 minutes under hydrogen atmosphere. The results of the silicon admixture on the density, porosity, microstructure and mechanical properties of the sintered specimens are discussed.


2000 ◽  
Vol 652 ◽  
Author(s):  
Aude Taisne ◽  
Brigitte Décamps ◽  
Louisette Priester

ABSTRACTElementary mechanisms of deformation by fatigue in duplex stainless steels bicrystals are studied by transmission electron microscopy (TEM). An attempt is made to correlate the bicrystal macroscopic behaviour with the interphase interface crystallography.


Materials ◽  
2019 ◽  
Vol 12 (18) ◽  
pp. 2906 ◽  
Author(s):  
Carla Gabriela Silva Leite ◽  
Eli Jorge da Cruz Junior ◽  
Mattia Lago ◽  
Andrea Zambon ◽  
Irene Calliari ◽  
...  

Duplex stainless steels (DSSs), a particular category of stainless steels, are employed in all kinds of industrial applications where excellent corrosion resistance and high strength are necessary. These good properties are provided by their biphasic microstructure, consisting of ferrite and austenite in almost equal volume fractions of phases. In the present work, Nd: YAG pulsed laser dissimilar welding of UNS S32750 super duplex stainless steel (SDSS) with 316L austenitic stainless steel (ASS), with different heat inputs, was investigated. The results showed that the fusion zone microstructure observed consisted of a ferrite matrix with grain boundary austenite (GBA), Widmanstätten austenite (WA) and intragranular austenite (IA), with the same proportion of ferrite and austenite phases. Changes in the heat input (between 45, 90 and 120 J/mm) did not significantly affect the ferrite/austenite phase balance and the microhardness in the fusion zone.


2013 ◽  
Vol 711 ◽  
pp. 95-98
Author(s):  
Xiao Liu ◽  
Jing Long Liang

The effect of Ce on structure and mechanical properties of 21Cr11Ni austenitic stainless steels were studied by metallographic examination, scanning electron microscope (SEM), tensile test. The results show that the proper amount of Ce can refine microstructure of austenitic stainless steel. Fracture is changed from cleavage to ductile fracture by adding Ce to austenitic stainless steel. 21Cr11Ni stainless steel containing 0.05% Ce can improve its high temerature strength, and the strength is increased 21.81% at 1073K respectively comparing with that of 21Cr11Ni stainless steel without Ce.


2013 ◽  
Vol 794 ◽  
pp. 380-390
Author(s):  
Krishnan Sivaraman ◽  
Dileep Kulkarni

Stainless steels are engineering materials capable of meeting a wide range of design criteria. They exhibit excellent corrosion resistance, strength at elevated temperature, toughness at cryogenic temperature and fabrication characteristics, and they are selected for a broad range of consumer, commercial, and industrial applications. In the fabrication of stainless steel products, components, or equipment, manufacturers employ welding as the principal joining method. Stainless steels possess good weldability and a welded joint can provide optimum corrosion resistance, strength, and fabrication economy provided reasonable care is exercised during welding. L&T's Heavy Engineering (HE) has established a reputation for quality products in the global market with its strong engineering capabilities and state-of-the-art manufacturing facilities. It manufactures and supplies various critical equipments like reactors, vessels, heat exchangers and inter-connecting piping to Fertilizer, Refinery, Petrochemical, Chemical, Oil & Gas, Power, Nuclear and allied Strategic sectors. The wide spectrum of equipments mentioned involves fabrication of various grades of Stainless Steel (SS)like Austenitic, Ferritic, Martensitic, Duplex, Super Duplex etc. This paper discusses some of the high productivity welding processes and the techniques being used in manufacturing Stainless Steel vessels at Larsen & Toubro’s Heavy Engineering such as: Narrow groove welding of high thickness SS joints by Submerged Arc Welding(SAW), High deposition SS weld surfacing using Electro Slag Strip Cladding (ESSC), Hotwire GTAW for joining & surfacing of SS, SS Liner welding by GTAW for critical Urea Service applications, Automatic Tube to Tube sheet Welding etc.


2013 ◽  
Vol 794 ◽  
pp. 257-273
Author(s):  
Damian J. Kotecki

This lecture presents the authors personal views on the landmark events that have strongly affected the welding of stainless steels over their lifetime. Although 1913 is commonly recognized as the birth of stainless steels with the commercialization of the martensitic alloy of Harry Brearly and the austenitic alloy of Eduard Maurer and Benno Straus, the story can be considered to begin as long ago as 1797 with the discovery of chromium by Klaproth and Vauquelin, and the observation by Vauquelin in 1798 that chromium resists acids surprisingly well. From the 1870s onwards, corrosion resisting properties of iron-chromium alloys were known. One might mark the first iron-chromium-nickel constitution diagram of Maurer and Strauss in 1920 as a major landmark in the science of welding of stainless steels. Their diagram evolved until the outbreak of World War II in Europe in 1939, and nominally austenitic stainless steel weld metals, containing ferrite that provided crack resistance, were extensively employed for armor welding during the war, based on their diagram. Improved diagrams for use in weld filler metal design and dissimilar welding were developed by Schaeffler (1947-1949), DeLong (1956-1973) and the Welding Research Council (1988 and 1992). Until about 1970, there was a major cost difference between low carbon austenitic stainless steels and those austenitic stainless steels of 0.04% carbon and more because the low carbon grades had to be produced using expensive low carbon ferro-chromium. Welding caused heat affected zone sensitization of the higher carbon alloys, which meant that they had to be solution annealed and quenched to obtain good corrosion resistance. In 1955, Krivsky invented the argon-oxygen decarburization process for refining stainless steels, which allowed low carbon alloys to be produced using high carbon ferro-chromium. AOD became widely used by 1970 in the industrialized countries and the cost penalty for low carbon stainless steel grades virtually vanished, as did the need to anneal and quench stainless steel weldments. Widespread use of AOD refining of stainless steels brought with it an unexpected welding problem. Automatic welding procedures for orbital gas tungsten arc welding of stainless steel tubing for power plant construction had been in place for many years and provided 100% penetration welds consistently. However, during the 1970s, inconsistent penetration began to appear in such welds, and numerous researchers sought the cause. The 1982 publication of Heiple and Roper pinpointed the cause as a reversal of the surface tension gradient as a function of temperature on the weld pool surface when weld pool sulfur became very low. The AOD refining process was largely responsible for the very low sulfur base metals that resulted in incomplete penetration. The first duplex ferritic-austenitic stainless steel was developed in 1933 by Avesta in Sweden. Duplex stainless steels were long considered unweldable unless solution annealed, due to excessive ferrite in the weld heat-affected zone. However, in 1971, Joslyn Steel began introducing nitrogen into the AOD refining of stainless steels, and the duplex stainless steel producers noticed. Ogawa and Koseki in 1989 demonstrated the dramatic effect of nitrogen additions on enhanced weldability of duplex stainless steels, and these are widely welded today without the need to anneal. Although earlier commercial embodiments of small diameter gas-shielded flux cored stainless steel welding electrodes were produced, the 1982 patent of Godai and colleagues became the basis for widespread market acceptance of these electrodes from many producers. The key to the patent was addition of a small amount of bismuth oxide which resulted in very attractive slag detachment. Electrodes based on this patent quickly came to dominate the flux cored stainless steel market. Then a primary steam line, welded with these electrodes, ruptured unexpectedly in a Japanese power plant. Investigations published in 1997 by Nishimoto et al and Toyoda et al, among others, pinpointed the cause as about 200 ppm of bismuth retained in the weld metal which led to reheat cracking along grain boundaries where the Bi segregated. Bismuth-free electrode designs were quickly developed for high temperature service, while the bismuth-containing designs remain popular today for service not involving high temperatures.


2007 ◽  
Vol 539-543 ◽  
pp. 4891-4896 ◽  
Author(s):  
P. Antoine ◽  
B. Soenen ◽  
Nuri Akdut

Transformation of austenite to martensite during cold rolling operations is widely used to strengthen metastable austenitic stainless steel grades. Static strain aging (SSA) phenomena at low temperature, typically between 200°C and 400°C, can be used for additional increase in yield strength due to the presence of α’-martensite in the cold rolled metastable austenitic stainless steels. Indeed, SSA in austenitic stainless steel affects mainly in α’-martensite. The SSA response of three industrial stainless steel grades was investigated in order to understand the aspects of the aging phenomena at low temperature in metastable austenitic stainless steels. In this study, the optimization of, both, deformation and time-temperature parameters of the static aging treatment permitted an increase in yield strength up to 300 MPa while maintaining an acceptable total elongation in a commercial 301LN steel grade. Deformed metastable austenitic steels containing the “body-centered” α’-martensite are strengthened by the diffusion of interstitial solute atoms during aging at low temperature. Therefore, the carbon redistribution during aging at low temperature is explained in terms of the microstructural changes in austenite and martensite.


Sign in / Sign up

Export Citation Format

Share Document