scholarly journals A Comparative Study of EMG Indices in Muscle Fatigue Evaluation Based on Grey Relational Analysis during All-Out Cycling Exercise

2018 ◽  
Vol 2018 ◽  
pp. 1-8 ◽  
Author(s):  
Lejun Wang ◽  
Yuting Wang ◽  
Aidi Ma ◽  
Guoqiang Ma ◽  
Yu Ye ◽  
...  

The increased popularization of cycling has brought an increase in cycling-related injuries, which has been suggested to be associated with muscle fatigue. However, it still remains unclear on the utility of different EMG indices in muscle fatigue evaluation induced by cycling exercise. In this study, ten cyclist volunteers performed a 30-second all-out cycling exercise after a warm-up period. Surface electromyography (sEMG) from vastus lateralis muscle (VL) and power output and cadence were recorded and EMG RMS, MF and MPF based on Fourier Transform, MDF and MNF based on wavelet packet transformation, and C(n) based on Lempel–Ziv complexity algorithm were calculated. Utility of the indices was compared based on the grey rational grade of sEMG indices and power output and cadence. The results suggested that MNF derived from wavelet packet transformation was significantly higher than other EMG indices, indicating the potential application for fatigue evaluation induced by all-out cycling exercise.

2007 ◽  
Vol 103 (5) ◽  
pp. 1752-1756 ◽  
Author(s):  
T. M. Altenburg ◽  
H. Degens ◽  
W. van Mechelen ◽  
A. J. Sargeant ◽  
A. de Haan

In literature, an inconsistency exists in the submaximal exercise intensity at which type II fibers are activated. In the present study, the recruitment of type I and II fibers was investigated from the very beginning and throughout a 45-min cycle exercise at 75% of the maximal oxygen uptake, which corresponded to 38% of the maximal dynamic muscle force. Biopsies of the vastus lateralis muscle were taken from six subjects at rest and during the exercise, two at each time point. From the first biopsy single fibers were isolated and characterized as type I and II, and phosphocreatine-to-creatine (PCr/Cr) ratios and periodic acid-Schiff (PAS) stain intensities were measured. Cross sections were cut from the second biopsy, individual fibers were characterized as type I and II, and PAS stain intensities were measured. A decline in PCr/Cr ratio and in PAS stain intensity was used as indication of fiber recruitment. Within 1 min of exercise both type I and, although to a lesser extent, type II fibers were recruited. Furthermore, the PCr/Cr ratio revealed that the same proportion of fibers was recruited during the whole 45 min of exercise, indicating a rather constant recruitment. The PAS staining, however, proved inadequate to fully demonstrate fiber recruitment even after 45 min of exercise. We conclude that during cycling exercise a greater proportion of type II fibers is recruited than previously reported for isometric contractions, probably because of the dynamic character of the exercise. Furthermore, the PCr/Cr ratio method is more sensitive in determining fiber activation than the PAS stain intensity method.


2007 ◽  
Vol 103 (1) ◽  
pp. 177-183 ◽  
Author(s):  
Andrew W. Subudhi ◽  
Andrew C. Dimmen ◽  
Robert C. Roach

To determine if fatigue at maximal aerobic power output was associated with a critical decrease in cerebral oxygenation, 13 male cyclists performed incremental maximal exercise tests (25 W/min ramp) under normoxic (Norm: 21% FiO2) and acute hypoxic (Hypox: 12% FiO2) conditions. Near-infrared spectroscopy (NIRS) was used to monitor concentration (μM) changes of oxy- and deoxyhemoglobin (Δ[O2Hb], Δ[HHb]) in the left vastus lateralis muscle and frontal cerebral cortex. Changes in total Hb were calculated (Δ[THb] = Δ[O2Hb] + Δ[HHb]) and used as an index of change in regional blood volume. Repeated-measures ANOVA were performed across treatments and work rates (α = 0.05). During Norm, cerebral oxygenation rose between 25 and 75% peak power output {Powerpeak; increased (inc) Δ[O2Hb], inc. Δ[HHb], inc. Δ[THb]}, but fell from 75 to 100% Powerpeak {decreased (dec) Δ[O2Hb], inc. Δ[HHb], no change Δ[THb]}. In contrast, during Hypox, cerebral oxygenation dropped progressively across all work rates (dec. Δ[O2Hb], inc. Δ[HHb]), whereas Δ[THb] again rose up to 75% Powerpeak and remained constant thereafter. Changes in cerebral oxygenation during Hypox were larger than Norm. In muscle, oxygenation decreased progressively throughout exercise in both Norm and Hypox (dec. Δ[O2Hb], inc. Δ [HHb], inc. Δ[THb]), although Δ[O2Hb] was unchanged between 75 and 100% Powerpeak. Changes in muscle oxygenation were also greater in Hypox compared with Norm. On the basis of these findings, it is unlikely that changes in cerebral oxygenation limit incremental exercise performance in normoxia, yet it is possible that such changes play a more pivotal role in hypoxia.


2019 ◽  
Vol 14 (8) ◽  
pp. 1103-1109
Author(s):  
Tiago Turnes ◽  
Rafael Penteado dos Santos ◽  
Rafael Alves de Aguiar ◽  
Thiago Loch ◽  
Leonardo Trevisol Possamai ◽  
...  

Purpose: To compare the intensity and physiological responses of deoxygenated hemoglobin breaking point ([HHb]BP) and anaerobic threshold (AnT) during an incremental test and to verify their association with 2000-m rowing-ergometer performance in well-trained rowers. Methods: A total of 13 male rowers (mean [SD] age = 24 [11] y and  = 63.7 [6.1] mL·kg−1·min−1) performed a step incremental test. Gas exchange, vastus lateralis [HHb], and blood lactate concentration were measured. Power output, , and heart rate of [HHb]BP and AnT were determined and compared with each other. A 2000-m test was performed in another visit. Results: No differences were found between [HHb]BP and AnT in the power output (236 [31] vs 234 [31] W; Δ = 0.7%), 95% confidence interval [CI] 6.7%), (4.2 [0.5] vs 4.3 [0.4] L·min−1; Δ = −0.8%, 95% CI 4.0%), or heart rate (180 [16] vs 182 [12] beats·min−1; Δ = −1.6%, 95% CI 2.1%); however, there was high typical error of estimate (TEE) and wide 95% limits of agreement (LoA) for power output (TEE 10.7%, LoA 54.1–50.6 W), (TEE 5.9%, LoA −0.57 to 0.63 L·min−1), and heart rate (TEE 2.4%, LoA −9.6 to 14.7 beats·min−1). Significant correlations were observed between [HHb]BP (r = .70) and AnT (r = .89) with 2000-m mean power. Conclusions: These results demonstrate a breaking point in [HHb] of the vastus lateralis muscle during the incremental test that is capable of distinguishing rowers with different performance levels. However, the high random error would compromise the use of [HHb]BP for training and testing in rowing.


2011 ◽  
Vol 111 (5) ◽  
pp. 1422-1430 ◽  
Author(s):  
R. A. Jacobs ◽  
P. Rasmussen ◽  
C. Siebenmann ◽  
V. Díaz ◽  
M. Gassmann ◽  
...  

Human endurance performance can be predicted from maximal oxygen consumption (V̇o2max), lactate threshold, and exercise efficiency. These physiological parameters, however, are not wholly exclusive from one another, and their interplay is complex. Accordingly, we sought to identify more specific measurements explaining the range of performance among athletes. Out of 150 separate variables we identified 10 principal factors responsible for hematological, cardiovascular, respiratory, musculoskeletal, and neurological variation in 16 highly trained cyclists. These principal factors were then correlated with a 26-km time trial and test of maximal incremental power output. Average power output during the 26-km time trial was attributed to, in order of importance, oxidative phosphorylation capacity of the vastus lateralis muscle ( P = 0.0005), steady-state submaximal blood lactate concentrations ( P = 0.0017), and maximal leg oxygenation (sO2LEG) ( P = 0.0295), accounting for 78% of the variation in time trial performance. Variability in maximal power output, on the other hand, was attributed to total body hemoglobin mass (Hbmass; P = 0.0038), V̇o2max ( P = 0.0213), and sO2LEG ( P = 0.0463). In conclusion, 1) skeletal muscle oxidative capacity is the primary predictor of time trial performance in highly trained cyclists; 2) the strongest predictor for maximal incremental power output is Hbmass; and 3) overall exercise performance (time trial performance + maximal incremental power output) correlates most strongly to measures regarding the capability for oxygen transport, high V̇o2max and Hbmass, in addition to measures of oxygen utilization, maximal oxidative phosphorylation, and electron transport system capacities in the skeletal muscle.


1993 ◽  
Vol 75 (2) ◽  
pp. 712-719 ◽  
Author(s):  
G. C. Gaitanos ◽  
C. Williams ◽  
L. H. Boobis ◽  
S. Brooks

Eight male subjects volunteered to take part in this study. The exercise protocol consisted of ten 6-s maximal sprints with 30 s of recovery between each sprint on a cycle ergometer. Needle biopsy samples were taken from the vastus lateralis muscle before and after the first sprint and 10 s before and immediately after the tenth sprint. The energy required to sustain the high mean power output (MPO) that was generated over the first 6-s sprint (870.0 +/- 159.2 W) was provided by an equal contribution from phosphocreatine (PCr) degradation and anaerobic glycolysis. Indeed, within the first 6-s bout of maximal exercise PCr concentration had fallen by 57% and muscle lactate concentration had increased to 28.6 mmol/kg dry wt, confirming significant glycolytic activity. However, in the tenth sprint there was no change in muscle lactate concentration even though MPO was reduced only to 73% of that generated in the first sprint. This reduced glycogenolysis occurred despite the high plasma epinephrine concentration of 5.1 +/- 1.5 nmol/l after sprint 9. In face of a considerable reduction in the contribution of anaerobic glycogenolysis to ATP production, it was suggested that, during the last sprint, power output was supported by energy that was mainly derived from PCr degradation and an increased aerobic metabolism.


2002 ◽  
Vol 92 (4) ◽  
pp. 1487-1493 ◽  
Author(s):  
Romuald Lepers ◽  
Nicola A. Maffiuletti ◽  
Ludovic Rochette ◽  
Julien Brugniaux ◽  
Guillaume Y. Millet

The effects of prolonged cycling on neuromuscular parameters were studied in nine endurance-trained subjects during a 5-h exercise sustained at 55% of the maximal aerobic power. Torque during maximal voluntary contraction (MVC) of the quadriceps muscle decreased progressively throughout the exercise ( P < 0.01) and was 18% less at the end of exercise compared with the preexercise value. Peak twitch torque, contraction time, and total area of mechanical response decreased significantly ( P < 0.05) after the first hour of exercise. In contrast, changes in M-wave characteristics were significant only after the fourth hour of the exercise. Significant reductions ( P < 0.05) in electromyographic activity normalized to the M wave occurred after the first hour for the vastus lateralis muscle but only at the end of the exercise for the vastus medialis muscle. Muscle activation level, assessed by the twitch interpolation technique, decreased by 8% ( P < 0.05) at the end of the exercise. The results suggest that the time course is such that the contractile properties are significantly altered after the first hour, whereas excitability and central drive are more impaired toward the latter stages of the 5-h cycling exercise.


2016 ◽  
Vol 32 (6) ◽  
pp. 593-598 ◽  
Author(s):  
Igor Ramathur Telles Jesus ◽  
Roger Gomes Tavares Mello ◽  
Jurandir Nadal

During muscle fatigue analysis some standard indexes are calculated from the surface electromyogram (EMG) as root mean square value (RMS), mean (Fmean), and median power frequency (Fmedian). However, these parameters present limitations and principal component analysis (PCA) appears to be an adequate alternative. In this context, we propose two indexes based on PCA to enhance the quantitative muscle fatigue analysis during cyclical contractions. Signals of vastus lateralis muscle were collected during a maximal exercise test. Twenty-four subjects performed the test starting at 12.5 W power output with increments of 12.5 W⋅min–1, maintaining cadence of 50 rpm until voluntary exhaustion. The epochs of myoelectric activation were identified and used to estimate the power spectra. PCA was then applied to the power spectra of each subject. The standard (ST) and Euclidean (ED) distances were employed to estimate the alteration occurred due to fatigue. For comparison, the standard indexes were calculated. ST, ED, and RMS value were adequate for muscle fatigue analysis. Among these parameters, ST was more sensitive with higher effect size. Moreover, the Fmean and Fmedian were not sensitive to fatigue. The proposed method based on PCA of EMG in frequency domain allowed producing fatigue indexes suitable for cyclical contractions.


1985 ◽  
Vol 59 (2) ◽  
pp. 320-327 ◽  
Author(s):  
H. Hoppeler ◽  
H. Howald ◽  
K. Conley ◽  
S. L. Lindstedt ◽  
H. Claassen ◽  
...  

The adaptation of muscle structure, power output, and mass-specific rate of maximal O2 consumption (VO2max/Mb) with endurance training on bicycle ergometers was studied for five male and five female subjects. Biopsies of vastus lateralis muscle and VO2max determinations were made at the start and end of 6 wk of training. The power output maintained on the ergometer daily for 30 min was adjusted to achieve a heart rate exceeding 85% of the maximum for two-thirds of the training session. It is proposed that the observed preferential proliferation of subsarcolemmal vs. interfibrillar mitochondria and the increase in intracellular lipid deposits are two possible mechanisms by which muscle cells adapt to an increased use of fat as a fuel. The relative increase of VO2max/Mb (14%) with training was found to be smaller by more than twofold than the relative increase in maximal maintained power (33%) and the relative change in the volume density of total mitochondria (+40%). However, the calculated VO2 required at an efficiency of 0.25 to produce the observed mass-specific increase in maximal maintained power matched the actual increase in VO2max/Mb (8.0 and 6.5 ml O2 X min-1 X kg-1, respectively). These results indicate that despite disparate relative changes the absolute change in aerobic capacity at the local level (maintained power) can account for the increase in aerobic capacity observed at the general level (VO2max).


2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
Lejun Wang ◽  
Hua Yang ◽  
Guoqiang Ma ◽  
Mingxin Gong ◽  
Wenxin Niu ◽  
...  

The 30-second all-out sprint cycling exercise is a classical sport capacity evaluation method, which may cause severe lower limb muscle fatigue. However, the relationship between lower limb muscle fatigue and the decline in exercise performance during 30-second sprint cycling remains unclear. In this study, ten cyclists volunteered to participate in a 30-second all-out sprint cycling while power, cadence, and surface electromyographic (EMG) signals of eight lower limb muscles were recorded during the exercise. EMG mean frequency (MNF) of each lower limb muscle group was computed for every 3-second epoch based on wavelet packet transformation. Grey relational grades between pedalling performance and the EMG MNF of each lower limb muscle group during the whole process were calculated. The results demonstrated that EMG MNF of the rectus femoris (RF), vastus (VAS), gastrocnemius (GAS), and tibialis anterior (TA) progressively tired during a 30-second all-out sprint cycling exercise. Of the muscles evaluated, the degree of fatigue of TA showed the greatest association with exercise performance decline, whereas the muscle fatigue of RF, VAS, and GAS also significantly impacted exercise performance during a 30-second all-out sprint cycling exercise.


Sign in / Sign up

Export Citation Format

Share Document