Association Between Deoxygenated Hemoglobin Breaking Point, Anaerobic Threshold, and Rowing Performance

2019 ◽  
Vol 14 (8) ◽  
pp. 1103-1109
Author(s):  
Tiago Turnes ◽  
Rafael Penteado dos Santos ◽  
Rafael Alves de Aguiar ◽  
Thiago Loch ◽  
Leonardo Trevisol Possamai ◽  
...  

Purpose: To compare the intensity and physiological responses of deoxygenated hemoglobin breaking point ([HHb]BP) and anaerobic threshold (AnT) during an incremental test and to verify their association with 2000-m rowing-ergometer performance in well-trained rowers. Methods: A total of 13 male rowers (mean [SD] age = 24 [11] y and  = 63.7 [6.1] mL·kg−1·min−1) performed a step incremental test. Gas exchange, vastus lateralis [HHb], and blood lactate concentration were measured. Power output, , and heart rate of [HHb]BP and AnT were determined and compared with each other. A 2000-m test was performed in another visit. Results: No differences were found between [HHb]BP and AnT in the power output (236 [31] vs 234 [31] W; Δ = 0.7%), 95% confidence interval [CI] 6.7%), (4.2 [0.5] vs 4.3 [0.4] L·min−1; Δ = −0.8%, 95% CI 4.0%), or heart rate (180 [16] vs 182 [12] beats·min−1; Δ = −1.6%, 95% CI 2.1%); however, there was high typical error of estimate (TEE) and wide 95% limits of agreement (LoA) for power output (TEE 10.7%, LoA 54.1–50.6 W), (TEE 5.9%, LoA −0.57 to 0.63 L·min−1), and heart rate (TEE 2.4%, LoA −9.6 to 14.7 beats·min−1). Significant correlations were observed between [HHb]BP (r = .70) and AnT (r = .89) with 2000-m mean power. Conclusions: These results demonstrate a breaking point in [HHb] of the vastus lateralis muscle during the incremental test that is capable of distinguishing rowers with different performance levels. However, the high random error would compromise the use of [HHb]BP for training and testing in rowing.

Author(s):  
Kamil Michalik ◽  
Kuba Korta ◽  
Natalia Danek ◽  
Marcin Smolarek ◽  
Marek Zatoń

Background: The linearly increased loading (RAMP) incremental test is a method commonly used to evaluate physical performance in a laboratory, but the best-designed protocol remains unknown. The aim of this study was to compare the selected variables used in training control resulting from the two different intensities of RAMP incremental tests. Methods: Twenty healthy and physically active men took part in this experiment. The tests included two visits to a laboratory, during which anthropometric measurements, incremental test on a cycle ergometer, and examinations of heart rate and blood lactate concentration were made. The cross-over study design method was used. The subjects underwent a randomly selected RAMP test with incremental load: 0.278 W·s−1 or 0.556 W·s−1. They performed the second test a week later. Results: Peak power output was significantly higher by 51.69 W (p < 0.001; t = 13.10; ES = 1.13) in the 0.556 W·s−1 group. Total work done was significantly higher in the 0.278 W·s−1 group by 71.93 kJ (p < 0.001; t = 12.55; ES = 1.57). Maximal heart rate was significantly higher in the 0.278 W·s−1 group by 3.30 bpm (p < 0.01; t = 3.72; ES = 0.48). There were no statistically significant differences in heart rate recovery and peak blood lactate. Conclusions: We recommend use of the 0.556 W·s−1 RAMP protocol because it is of shorter duration compared with 0.278 W·s−1 and as such practically easier and of less effort for subjects.


1993 ◽  
Vol 75 (2) ◽  
pp. 712-719 ◽  
Author(s):  
G. C. Gaitanos ◽  
C. Williams ◽  
L. H. Boobis ◽  
S. Brooks

Eight male subjects volunteered to take part in this study. The exercise protocol consisted of ten 6-s maximal sprints with 30 s of recovery between each sprint on a cycle ergometer. Needle biopsy samples were taken from the vastus lateralis muscle before and after the first sprint and 10 s before and immediately after the tenth sprint. The energy required to sustain the high mean power output (MPO) that was generated over the first 6-s sprint (870.0 +/- 159.2 W) was provided by an equal contribution from phosphocreatine (PCr) degradation and anaerobic glycolysis. Indeed, within the first 6-s bout of maximal exercise PCr concentration had fallen by 57% and muscle lactate concentration had increased to 28.6 mmol/kg dry wt, confirming significant glycolytic activity. However, in the tenth sprint there was no change in muscle lactate concentration even though MPO was reduced only to 73% of that generated in the first sprint. This reduced glycogenolysis occurred despite the high plasma epinephrine concentration of 5.1 +/- 1.5 nmol/l after sprint 9. In face of a considerable reduction in the contribution of anaerobic glycogenolysis to ATP production, it was suggested that, during the last sprint, power output was supported by energy that was mainly derived from PCr degradation and an increased aerobic metabolism.


2014 ◽  
Vol 9 (1) ◽  
pp. 58-67 ◽  
Author(s):  
Dennis-Peter Born ◽  
Christoph Zinner ◽  
Britta Herlitz ◽  
Katharina Richter ◽  
Hans-Christer Holmberg ◽  
...  

Purpose:The current investigation assessed tissue oxygenation and local blood volume in both vastus lateralis muscles during 3000-m race simulations in elite speed skaters on ice and the effects of leg compression on physiological, perceptual, and performance measures.Methods:Ten (6 female) elite ice speed skaters completed 2 on-ice trials with and without leg compression. Tissue oxygenation and local blood volume in both vastus lateralis muscles were assessed with near-infrared spectroscopy. Continuous measures of oxygen uptake, ventilation, heart rate, and velocity were conducted throughout the race simulations, as well as blood lactate concentration and ratings of perceived exertion before and after the trials. In addition, lap times were assessed.Results:The investigation of tissue oxygenation in both vastus lateralis muscles revealed an asymmetry (P < .00; effect size = 1.81) throughout the 3000-m race simulation. The application of leg compression did not affect oxygenation asymmetry (smallest P = .99; largest effect size = 0.31) or local blood volume (P = .33; 0.95). Lap times (P = .88; 0.43), velocity (P = .24; 0.84), oxygen uptake (P = .79; 0.10), ventilation (P = .11; 0.59), heart rate (P = .21; 0.89), blood lactate concentration (P = .82; 0.59), and ratings of perceived exertion (P = .19; 1.01) were also unaffected by the different types of clothing.Conclusion:Elite ice speed skaters show an asymmetry in tissue oxygenation of both vastus lateralis muscles during 3000-m events remaining during the long gliding phases along the straight sections of the track. Based on the data, the authors conclude that there are no performance-enhancing benefits from wearing leg compression under a normal racing suit.


2020 ◽  
Vol 318 (2) ◽  
pp. R399-R409 ◽  
Author(s):  
Rafael de Almeida Azevedo ◽  
Jorge E. Béjar Saona ◽  
Erin Calaine Inglis ◽  
Danilo Iannetta ◽  
Juan M. Murias

During ramp-incremental (RI) exercise to exhaustion, the near-infrared spectroscopy-derived deoxygenated hemoglobin ([HHb]) signal in the vastus lateralis muscle shows a linear increase up to a point at which a plateau-like response is manifested ([HHb]bp). This study investigated if 1) the [HHb]bp is affected by different fractions of inspired O2 ([Formula: see text]) [hypoxia (16%; HYPO); normoxia (21%; NORM); hyperoxia (30%; HYPER)]; and 2) an abrupt change to hyperoxic-inspired gas just before the occurrence of the [HHb]bp (HYPERSWITCH) would affect the [HHb] plateau-like response. Ten physically active male participants reported to the laboratory on four separate occasions to perform an RI test to exhaustion in NORM, HYPO, and HYPER and an RI test to exhaustion with an abrupt increase in [Formula: see text] (30%; HYPERSWITCH) 15 W before the power output (PO) associated with [HHb]bp in normoxia. PO, [HHb], tissue O2 ([Formula: see text]), and pulse O2 saturation ([Formula: see text]) were recorded continuously. Peak PO was significantly lower in HYPO (290 ± 21 W) and higher in HYPER (321 ± 22 W) and HYPERSWITCH (320 ± 19 W) compared with NORM (311 ± 18 W). The PO associated with [HHb]bp was not different between NORM and HYPER (246 ± 23 vs. 247 ± 24 W), but it was lower in HYPO (198 ± 31 W) than NORM and HYPER. The PO associated with the [HHb]bp in HYPERSWITCH (240 ± 23) was not different compared with NORM. HYPER and HYPERSWITCH resulted in greater [Formula: see text] and [Formula: see text] compared with NORM. These results suggest that the [HHb]bp response is not dependent of O2 driving pressure and that other physiological mechanisms might determine its occurrence.


2000 ◽  
Vol 88 (1) ◽  
pp. 77-81 ◽  
Author(s):  
Robert K. Conlee ◽  
K. Patrick Kelly ◽  
Edward O. Ojuka ◽  
Roger L. Hammer

In our previous work, we routinely observed that a combined cocaine-exercise challenge results in an abnormally rapid muscle glycogen depletion and excessive blood lactacidosis. These phenomena occur simultaneously with a rapid rise in norepinephrine and in the absence of any rise in epinephrine. We postulated that norepinephrine may cause vasoconstriction of the muscle vasculature through activation of α-1 receptors during cocaine-exercise, thus inducing hypoxia and a concomitant rise in glycogenolysis and lactate accumulation. To test this hypothesis, rats were pretreated with the selective α-1-receptor antagonist prazosin (P) (0.1 mg/kg iv) or saline (S). Ten minutes later, the animals were treated with cocaine (-C) (5 mg/kg iv) or saline (-S) and run for 4 or 15 min at 22 m/min at 10% grade. In the S-S group, glycogen content of the white vastus lateralis muscle was unaffected by exercise at both time intervals, whereas in S-C rats glycogen was reduced by 47%. This effect of cocaine-exercise challenge was not attenuated by P. Similarly, blood lactate concentration in S-C rats was threefold higher than that of S-S after exercise, a response also not altered by pretreatment with P. On the basis of these observations, we conclude that the excessive glycogenolysis and lactacidosis observed during cocaine-exercise challenge is not the result of vasoconstriction secondary to norepinephrine activation of α-1 receptors.


2021 ◽  
Vol 12 ◽  
Author(s):  
Chihiro Kojima ◽  
Keiichi Yamaguchi ◽  
Hiroto Ito ◽  
Nobukazu Kasai ◽  
Olivier Girard ◽  
...  

PurposeThis study aimed to examine the effect of applying BFR during rest periods of repeated cycling sprints on muscle oxygenation.MethodsSeven active males performed 5 × 10-s maximal pedaling efforts with 40-s passive rest, with or without BFR application during rest period. BFR was applied for 30 s between sprints (between 5 and 35 s into rest) through a pneumatic pressure cuff inflated at 140 mmHg. Vastus lateralis muscle oxygenation was monitored using near-infrared spectroscopy. In addition, blood lactate concentration and heart rate were also evaluated.ResultsThe BFR trial showed significantly lower oxyhemoglobin (oxy-Hb) and tissue saturation (StO2) levels than the CON trial (P &lt; 0.05). However, power output and blood lactate concentration did not significantly differ between the two trials (P &gt; 0.05).ConclusionApplying BFR during rest periods of repeated cycling sprints decreased muscle oxygenation of active musculature, without interfering with power output during sprints.


2010 ◽  
Vol 35 (2) ◽  
pp. 142-150 ◽  
Author(s):  
Martin Buchheit ◽  
Pascale Duché ◽  
Paul B. Laursen ◽  
Sébastien Ratel

The aim of the present study was to determine whether differences in age-related heart rate recovery (HRR) kinetics were associated with differences in power output, blood lactate concentration ([La]b), and acidosis among children, adolescents, and adults. Ten prepubertal boys (aged 9.6 ± 0.7 years), 6 pubertal boys (aged 15.2 ± 0.8 years), and 7 men (aged 20.4 ± 1.0 years) performed 10 repeated 10-s all-out cycling sprints, interspersed with 5-min passive recovery intervals. Mean power output (MPO) was measured during each sprint, and HRR, [La]b, and acidosis (pHb) were determined immediately after each sprint. Children displayed a shorter time constant of the primary component of HRR than adolescents and adults (17.5 ± 4.1 vs. 38.0 ± 5.3 and 36.9 ± 4.9 s, p < 0.001 for both), but no difference was observed between adolescents and adults (p = 1.00). MPO, [La]b, and pHb were also lower in children compared with the other 2 groups (p < 0.001 for both). When data were pooled, HRR was significantly correlated with MPO (r = 0.48, p < 0.001), [La]b (r = 0.58, p < 0.001), and pHb (r = –0.60, p < 0.001). Covarying for MPO, [La]b, or pHb abolished the between-group differences in HRR (p = 0.42, p = 0.19, and p = 0.16, respectively). Anaerobic glycolytic contribution and power output explained a significant portion of the HRR variance following high-intensity intermittent exercise. The faster HRR kinetic observed in children appears to be related, at least in part, to their lower work rate and inherent lack of anaerobic metabolic capacity.


1988 ◽  
Vol 64 (6) ◽  
pp. 2622-2630 ◽  
Author(s):  
E. F. Coyle ◽  
A. R. Coggan ◽  
M. K. Hopper ◽  
T. J. Walters

Fourteen competitive cyclists who possessed a similar maximum O2 consumption (VO2 max; range, 4.6–5.0 l/min) were compared regarding blood lactate responses, glycogen usage, and endurance during submaximal exercise. Seven subjects reached their blood lactate threshold (LT) during exercise of a relatively low intensity (group L) (i.e., 65.8 +/- 1.7% VO2 max), whereas exercise of a relatively high intensity was required to elicit LT in the other seven men (group H) (i.e., 81.5 +/- 1.8% VO2 max; P less than 0.001). Time to fatigue during exercise at 88% of VO2 max was more than twofold longer in group H compared with group L (60.8 +/- 3.1 vs. 29.1 +/- 5.0 min; P less than 0.001). Over 92% of the variance in performance was related to the % VO2 max at LT and muscle capillary density. The vastus lateralis muscle of group L was stressed more than that of group H during submaximal cycling (i.e., 79% VO2 max), as reflected by more than a twofold greater (P less than 0.001) rate of glycogen utilization and blood lactate concentration. The quality of the vastus lateralis in groups H and L was similar regarding mitochondrial enzyme activity, whereas group H possessed a greater percentage of type I muscle fibers (66.7 +/- 5.2 vs. 46.9 +/- 3.8; P less than 0.01). The differing metabolic responses to submaximal exercise observed between the two groups appeared to be specific to the leg extension phase of cycling, since the blood lactate responses of the two groups were comparable during uphill running. These data indicate that endurance can vary greatly among individuals with an equal VO2 max.


Author(s):  
Jonpaul Nevin ◽  
Paul Smith

Purpose: The aim of the following case study was to evaluate the effectiveness of a 30-week concurrent strength and endurance training program designed to prepare a trained H4 male handcyclist (aged 28 y, bilateral, above knee amputee, and body mass 65.6 kg) for a 1407-km ultra-endurance handcycling challenge. Methods: This observational case study tracked selected physiological measures, training intensity distribution, and total training load over the course of a 30-week concurrent training protocol. Furthermore, the athlete’s performance profile during the ultra-endurance challenge was monitored with power output, cadence, speed, and heart rate recorded throughout. Results: Findings revealed considerable improvements in power output at a fixed blood lactate concentration of 4 mmol·L−1 (+25.7%), peak aerobic power output (+18.9%), power-to-mass ratio (+18.3%), relative peak oxygen uptake (+13.9%), gross mechanical efficiency (+4.6%), bench press 1-repetition maximum (+4.3%), and prone bench pull 1-repetition maximum (+14.9%). The athlete completed the 1407-km route in a new handcycling world record time of 89:55 hours. Average speed was 18.7 (2.1) km·h−1; cadence averaged 70.0 (2.6) rpm, while average power output was 67 (12) W. In terms of internal load, the athlete’s average heart rate was 111 (11) beats per minute. Conclusion: These findings demonstrate how a long-term concurrent strength and endurance training program can be used to optimize handcycling performance capabilities in preparation for an ultra-endurance cycling event. Knowledge emerging from this case study provides valuable information that can guide best practices with respect to handcycling training for ultra-endurance events.


2018 ◽  
Vol 3 (4) ◽  
pp. 60 ◽  
Author(s):  
Ramires Tibana ◽  
Nuno de Sousa ◽  
Jonato Prestes ◽  
Fabrício Voltarelli

The aim of this study was to analyze blood lactate concentration (LAC), heart rate (HR), and rating perceived exertion (RPE) during and after shorter and longer duration CrossFit® sessions. Nine men (27.7 ± 3.2 years; 11.3 ± 4.6% body fat percentage and training experience: 41.1 ± 19.6 months) randomly performed two CrossFit® sessions (shorter: ~4 min and longer: 17 min) with a 7-day interval between them. The response of LAC and HR were measured pre, during, immediately after, and 10, 20, and 30 min after the sessions. RPE was measured pre and immediately after sessions. Lactate levels were higher during the recovery of the shorter session as compared with the longer session (shorter: 15.9 ± 2.2 mmol/L/min, longer: 12.6 ± 2.6 mmol/L/min; p = 0.019). There were no significant differences between protocols on HR during (shorter: 176 ± 6 bpm or 91 ± 4% HRmax, longer: 174 ± 3 bpm or 90 ± 3% HRmax, p = 0.387). The LAC was significantly higher throughout the recovery period for both training sessions as compared to pre-exercise. The RPE was increased immediately after both sessions as compared to pre-exercise, while there was no significant difference between them (shorter: 8.7 ± 0.9, longer: 9.6 ± 0.5; p = 0.360). These results demonstrated that both shorter and longer sessions induced elevated cardiovascular responses which met the recommendations for gains in cardiovascular fitness. In addition, both training sessions had a high metabolic and perceptual response, which may not be suitable if performed on consecutive days.


Sign in / Sign up

Export Citation Format

Share Document