scholarly journals Unified Framework for Optimal Routing Choice under Guidance Information

Complexity ◽  
2018 ◽  
Vol 2018 ◽  
pp. 1-11 ◽  
Author(s):  
Zhi-yuan Sun ◽  
Yue Li ◽  
Wen-cong Qu ◽  
Tanveer Muhammad

In order to satisfy the diverse demand of travel service in the context of big data, this paper puts forward a unified framework for optimal routing choice under guidance information. With consideration of the influence of big data, the scenario analysis of routing choice is implemented, and the routing choice under guidance information is discussed. The optimal routing choice problem is abstracted into the collaboration optimization model of travel route choice, departure time choice, and travel mode choice. Based on some basic assumptions, the collaboration optimization model is formulated as a variational inequality model. The method of successive averages is applied to solve the proposed model. A case study is carried out to verify the applicability and reliability of the model and algorithm.

2016 ◽  
Vol 2016 ◽  
pp. 1-8 ◽  
Author(s):  
Qingyou Yan ◽  
Qian Zhang ◽  
Xin Zou

The study of traditional resource leveling problem aims at minimizing the resource usage fluctuations and obtaining sustainable resource supplement, which is accomplished by adjusting noncritical activities within their start and finish time. However, there exist limitations in terms of the traditional resource leveling problem based on the fixed project duration. This paper assumes that the duration can be changed in a certain range and then analyzes the relationship between the scarce resource usage fluctuations and project cost. This paper proposes an optimization model for the multiresource leveling problem. We take into consideration five kinds of cost: the extra hire cost when the resource demand is greater than the resource available amount, the idle cost of resource when the resource available amount is greater than the resource demand, the indirect cost related to the duration, the liquidated damages when the project duration is extended, and the incentive fee when the project duration is reduced. The optimal objective of this model is to minimize the sum of the aforementioned five kinds of cost. Finally, a case study is examined to highlight the characteristic of the proposed model at the end of this paper.


DYNA ◽  
2020 ◽  
Vol 87 (212) ◽  
pp. 179-188 ◽  
Author(s):  
Néstor Raúl Ortíz Pimiento ◽  
Francisco Javier Diaz Serna

New product development projects (NPDP) face different risks that may affect the scheduling. In this article, the purpose was to develop an optimization model to solve the RCPSP in NPDP and obtain a robust baseline for the project. The proposed model includes three stages: the identification of the project’s risks, an estimation of activities’ duration, and the resolution of an integer linear program. Two versions of the model were designed and compared in order to select the best one. The first version uses a method to estimate the activities’ duration based on the expected value of the impact of the risks and the second version uses a method based on the judgmental risk analysis process. Finally, the two version of the model were applied to a case study and the best version of the model was identified using a robustness indicator that analyses the start times of the baselines generated.


Author(s):  
Alessio Faccia

The business planning process can be considered as a strategic phase of any business. Given that the business plan is a management accounting tool, there are countless approaches that can be adopted to prepare it since there is no legal requirement, as opposed to obligations relating to financial accounting. However, in general, every business plan consists of a numerical part (budget) and a narrative part. In this research, the author highlights, on the basis of experiences and commonly used theories, a standard process that can be adaptable to the business plan of any type of activity. The use of big data is highlighted as an essential part of feeding the data of almost all the steps of the budget. The author then manages to determine a generally applicable standard process, indicating all the data necessary to prepare an accurate and reliable business plan. A case study will provide adequate support to the demonstration of the immediate applicability of the proposed model.


2017 ◽  
Vol 2017 ◽  
pp. 1-7
Author(s):  
Hanchuan Pan ◽  
Zhigang Liu

Capacity of subway station is an important factor to ensure the safety and improve the transportation efficiency. In this paper, based on the M/G/C/C state-dependent queuing model, a probabilistic selection optimization model is proposed to assess the capacity of the station. The goal of the model is to maximize the output rate of the station, and the decision variables of the model are the selection results of the passengers. Finally, this paper takes a subway station of Shanghai Metro as a case study and calculates the optimal selection probability. The proposed model could be used to analyze the average waiting time, congestion probability, and other evaluation indexes; at the same time, it verifies the validity and practicability of the model.


Energies ◽  
2020 ◽  
Vol 13 (1) ◽  
pp. 215 ◽  
Author(s):  
Mengqi Zhao ◽  
Xiaoling Wang ◽  
Jia Yu ◽  
Lei Bi ◽  
Yao Xiao ◽  
...  

Construction duration and schedule robustness are of great importance to ensure efficient construction. However, the current literature has neglected the importance of schedule robustness. Relatively little attention has been paid to schedule robustness via deviation of an activity’s starting time, which does not consider schedule robustness via structural deviation caused by the logical relationships among activities. This leads to a possibility of deviation between the planned schedule and the actual situation. Thus, an optimization model of construction duration and schedule robustness is proposed to solve this problem. Firstly, duration and two robustness criteria including starting time deviation and structural deviation were selected as the optimization objectives. Secondly, critical chain method and starting time criticality (STC) method were adopted to allocate buffers to the schedule in order to generate alternative schedules for optimization. Thirdly, hybrid grey wolf optimizer with sine cosine algorithm (HGWOSCA) was proposed to solve the optimization model. The movement directions and speed of grey wolf optimizer (GWO) was improved by sine cosine algorithm (SCA) so that the algorithm’s performance of convergence, diversity, accuracy, and distribution improved. Finally, an underground power station in China was used for a case study, by which the applicability and advantages of the proposed model were proved.


Energies ◽  
2021 ◽  
Vol 14 (22) ◽  
pp. 7456
Author(s):  
Antonio Jiménez-Marín ◽  
Juan Pérez-Ruiz

This paper presents a robust optimization model to find out the day-ahead energy and reserve to be scheduled by an electric vehicle (EV) aggregator. Energy can be purchased from, and injected to, the distribution network, while upward and downward reserves can be also provided by the EV aggregator. Although it is an economically driven model, the focus of this work relies on the actual availability of the scheduled reserves in a future real-time. To this end, two main features stand out: on one hand, the uncertainty regarding the EV driven pattern is modeled through a robust approach and, on the other hand, a set of non-anticipativity constraints are included to prevent from unavailable future states. The proposed model is posed as a mixed-integer robust linear problem in which binary variables are used to consider the charging, discharging or idle status of the EV aggregator. Results over a 24-h case study show the capability of the proposed model.


2019 ◽  
Vol 47 (6) ◽  
pp. 948-963
Author(s):  
Zhiqiang Zou ◽  
Tao Cai ◽  
Kai Cao

Urban big data include various types of datasets, such as air quality data, meteorological data, and weather forecast data. Air quality index is broadly used in many countries as an indicator to measure the air pollution status. This indicator has a great impact on outdoor activities of urban residents, such as long-distance cycling, running, jogging, and walking. However, for routes planning for outdoor activities, there is still a lack of comprehensive consideration of air quality. In this paper, an air quality index prediction model (namely airQP-DNN) and its application are proposed to address the issue. This paper primarily consists of two components. The first component is to predict the future air quality index based on a deep neural network, using historical air quality datasets, current meteorological datasets, and weather forecasting datasets. The second component refers to a case study of outdoor activities routes planning in Beijing, which can help plan the routes for outdoor activities based on the airQP-DNN model, and allow users to enter the origin and destination of the route for the optimized path with the minimum accumulated air quality index. The air quality monitoring datasets of Beijing and surrounding cities from April 2014 to April 2015 (over 758,000 records) are used to verify the proposed airQP-DNN model. The experimental results explicitly demonstrate that our proposed model outperforms other commonly used methods in terms of prediction accuracy, including autoregressive integrated moving average model, gradient boosted decision tree, and long short-term memory. Based on the airQP-DNN model, the case study of outdoor activities routes planning is implemented. When the origin and destination are specified, the optimized paths with the minimum accumulated air quality index would be provided, instead of the standard static Dijkstra shortest path. In addition, a Web-GIS-based prototype has also been successfully developed to support the implementation of our proposed model in this research. The success of our study not only demonstrates the value of the proposed airQP-DNN model, but also shows the potential of our model in other possible extended applications.


2020 ◽  
Author(s):  
Anusha Ampavathi ◽  
Vijaya Saradhi T

UNSTRUCTURED Big data and its approaches are generally helpful for healthcare and biomedical sectors for predicting the disease. For trivial symptoms, the difficulty is to meet the doctors at any time in the hospital. Thus, big data provides essential data regarding the diseases on the basis of the patient’s symptoms. For several medical organizations, disease prediction is important for making the best feasible health care decisions. Conversely, the conventional medical care model offers input as structured that requires more accurate and consistent prediction. This paper is planned to develop the multi-disease prediction using the improvised deep learning concept. Here, the different datasets pertain to “Diabetes, Hepatitis, lung cancer, liver tumor, heart disease, Parkinson’s disease, and Alzheimer’s disease”, from the benchmark UCI repository is gathered for conducting the experiment. The proposed model involves three phases (a) Data normalization (b) Weighted normalized feature extraction, and (c) prediction. Initially, the dataset is normalized in order to make the attribute's range at a certain level. Further, weighted feature extraction is performed, in which a weight function is multiplied with each attribute value for making large scale deviation. Here, the weight function is optimized using the combination of two meta-heuristic algorithms termed as Jaya Algorithm-based Multi-Verse Optimization algorithm (JA-MVO). The optimally extracted features are subjected to the hybrid deep learning algorithms like “Deep Belief Network (DBN) and Recurrent Neural Network (RNN)”. As a modification to hybrid deep learning architecture, the weight of both DBN and RNN is optimized using the same hybrid optimization algorithm. Further, the comparative evaluation of the proposed prediction over the existing models certifies its effectiveness through various performance measures.


Sign in / Sign up

Export Citation Format

Share Document