scholarly journals Waveguide Propagation of Light in Polymer Porous Films Filled with Nematic Liquid Crystals

2019 ◽  
Vol 2019 ◽  
pp. 1-11 ◽  
Author(s):  
A. D. Kiselev ◽  
S. V. Pasechnik ◽  
D. V. Shmeliova ◽  
A. P. Chopik ◽  
D. A. Semerenko ◽  
...  

We theoretically analyze the waveguide regime of light propagation in a cylindrical pore of a polymer matrix filled with liquid crystals assuming that the effective radial optical anisotropy is biaxial. From numerical analysis of the dispersion relations, the waveguide modes are found to be sensitive to the field-induced changes of the anisotropy. The electrooptic properties of the polymer porous polyethylene terephthalate (PET) films filled with the nematic liquid crystal 5CB are studied experimentally and the experimental results are compared with the results of the theoretical investigation.

2015 ◽  
pp. 1-6 ◽  
Author(s):  
S.V. Pasechnik ◽  
A.P. Chopik ◽  
D.V. Shmeliova ◽  
E.M. Drovnikov ◽  
D.A. Semerenko ◽  
...  
Keyword(s):  

2020 ◽  
Vol 713 (1) ◽  
pp. 65-77
Author(s):  
Tianyi Guo ◽  
Xiaoyu Zheng ◽  
Peter Palffy-Muhoray

1995 ◽  
Vol 52 (5) ◽  
pp. 5053-5060 ◽  
Author(s):  
E. Santamato ◽  
G. Abbate ◽  
P. Maddalena ◽  
L. Marrucci

Universe ◽  
2018 ◽  
Vol 4 (12) ◽  
pp. 137 ◽  
Author(s):  
Carlos Sabín

We consider the propagation of light along a 3D nanophotonic structure with the spatial shape of a spacetime containing a traversable wormhole. We show that waves experience significant changes of phase and group velocities when propagating along this curved space. This experiment can be realized with state-of-the-art nanophotonics technology.


2019 ◽  
Vol 34 (04) ◽  
pp. 1950029
Author(s):  
Siamak Akhshabi

We investigate the propagation of light rays and evolution of optical scalars in gauge theories of gravity where torsion is present. Recently, the modified Raychaudhuri equation in the presence of torsion has been derived. We use this result to derive the basic equations of geometric optics for several different interesting solutions of the Poincaré gauge theory of gravity. The results show that the focusing effects for neighboring light rays will be different than general relativity. This in turn has practical consequences in the study of gravitational lensing effects and also in determining the angular diameter distance for cosmological objects.


2020 ◽  
Vol 10 (4) ◽  
pp. 1367
Author(s):  
Stefan Rothe ◽  
Qian Zhang ◽  
Nektarios Koukourakis ◽  
Jürgen W. Czarske

Multimode fibers are regarded as the key technology for the steady increase in data rates in optical communication. However, light propagation in multimode fibers is complex and can lead to distortions in the transmission of information. Therefore, strategies to control the propagation of light should be developed. These strategies include the measurement of the amplitude and phase of the light field after propagation through the fiber. This is usually done with holographic approaches. In this paper, we discuss the use of a deep neural network to determine the amplitude and phase information from simple intensity-only camera images. A new type of training was developed, which is much more robust and precise than conventional training data designs. We show that the performance of the deep neural network is comparable to digital holography, but requires significantly smaller efforts. The fast characterization of multimode fibers is particularly suitable for high-performance applications like cyberphysical systems in the internet of things.


2011 ◽  
Vol 497 ◽  
pp. 142-146
Author(s):  
Tomoyuki Sasaki ◽  
Kenta Miura ◽  
Hiroshi Ono ◽  
Osamu Hanaizumi

Light propagation in an optical waveguide fabricated by employing a dye-doped liquid crystal (DDLC) was observed. The propagation of a light signal in the waveguide was varied by irradiation with a control light whose wavelength was in the absorption band of the DDLC. By considering the photothermal effect of the DDLC, which enables the change of the refractive index due to temperature variation based on the absorption of light, we qualitatively explained the observed light propagation and demonstrated manipulation of the propagation.


2006 ◽  
Vol 2006 ◽  
pp. 1-6 ◽  
Author(s):  
Chen-Yang Liu ◽  
Lien-Wen Chen

Photonic crystals (PCs) have many potential applications because of their ability to control light-wave propagation and because PC-based waveguides may be integrated into optical circuits. We propose a novel tunable PC channel drop filter based on nematic liquid crystals and investigate its properties numerically by using the finite-difference time-domain (FDTD) method. The refractive indices of liquid crystals can be actively modulated after infiltrating nematic liquid crystals into the microcavity in PC waveguides with square lattices. Then we can control light propagation in a PC waveguide. We analyze theQ-factors and resonance frequencies of a tunable PC channel drop filter by considering various indices modulation of liquid crystals. The novel component can be used as wavelength division multiplexing in photonic integrated circuits.


Sign in / Sign up

Export Citation Format

Share Document