scholarly journals Tunable Channel Drop Filter in a Two-Dimensional Photonic Crystal Modulated by a Nematic Liquid Crystal

2006 ◽  
Vol 2006 ◽  
pp. 1-6 ◽  
Author(s):  
Chen-Yang Liu ◽  
Lien-Wen Chen

Photonic crystals (PCs) have many potential applications because of their ability to control light-wave propagation and because PC-based waveguides may be integrated into optical circuits. We propose a novel tunable PC channel drop filter based on nematic liquid crystals and investigate its properties numerically by using the finite-difference time-domain (FDTD) method. The refractive indices of liquid crystals can be actively modulated after infiltrating nematic liquid crystals into the microcavity in PC waveguides with square lattices. Then we can control light propagation in a PC waveguide. We analyze theQ-factors and resonance frequencies of a tunable PC channel drop filter by considering various indices modulation of liquid crystals. The novel component can be used as wavelength division multiplexing in photonic integrated circuits.

2021 ◽  
Author(s):  
Venkatachalam Kannaiyan ◽  
Sriram Kumar D ◽  
Robinson S

Abstract A two dimensional Photonic Crystal (2DPC) based eight channel wavelength division demultiplexer is proposed and designed for Coarse Wavelength Division Multiplexing (CWDM) applications. The circular ring resonator, channel selector, circulator rod, L bend waveguide and linear bus waveguide are essential parts of the proposed system. The system’s functional parameters such as Transmission efficiency, resonant wavelength, spectral width, channel spacing, Quality factor and crosstalk are investigated in this paper. The eight different wavelengths of channels are filtered out by altering the size of channel selector rod, setting the radius of the circle shaped cavity and relative refractive index of circulator rod. Initially the Photonic Band gap (PBG) is manipulated by applying Plane Wave Expansion (PWE) method of the 2DPC structure. The functional parameters are analysed by Finite Difference Time Domain (FDTD) method in periodic and non-periodic structure of the proposed system to arrive normalized transmission spectrum. The resonant wavelengths of designed eight paths of the device are varying from 1420nm to 1460nm with average spectral width and channel spacing are 5.8nm, 5.6nm respectively. The footprint of the device is 286.84µm2. Hence this small device can be implemented for CWDM systems in Photonic Integrated Circuits (PIC).


2013 ◽  
Vol 760-762 ◽  
pp. 417-420
Author(s):  
Xiang Nan Zhang ◽  
Gui Qiang Liu ◽  
Ying Hu ◽  
Zheng Jie Cai ◽  
Yuan Hao Chen

We design a new two-sided coupling channel drop filter (CDF) based on a two-dimensional (2D) photonic crystal (PC). Three channels formed by line defects for light propagation, two L4 resonators positioned at both sides of the input waveguide for light coupling, and one point defect micro-cavity in the bus waveguide for wavelength-selective reflection are introduced into the PC structure. The optical characteristics of this proposed structure are calculated by finite-difference time-domain (FDTD) method combined with the perfectly matched layers (PMLs) as the boundary conditions. Three wavelengths centered at 1550, 1575 and 1610 nm within the limit of communication windows are successfully separated in three channels by adjusting the size of coupling rods and the positions of L4 resonators and micro-cavity. High transmission efficiency and more than 20 nm channel spacing are achieved. These demonstrate that our proposed structure is suitable for photonic integrated circuits (PICs) and coarse wavelength division multiplexing (WDM) optical communication systems.


2011 ◽  
Vol 497 ◽  
pp. 142-146
Author(s):  
Tomoyuki Sasaki ◽  
Kenta Miura ◽  
Hiroshi Ono ◽  
Osamu Hanaizumi

Light propagation in an optical waveguide fabricated by employing a dye-doped liquid crystal (DDLC) was observed. The propagation of a light signal in the waveguide was varied by irradiation with a control light whose wavelength was in the absorption band of the DDLC. By considering the photothermal effect of the DDLC, which enables the change of the refractive index due to temperature variation based on the absorption of light, we qualitatively explained the observed light propagation and demonstrated manipulation of the propagation.


Nanomaterials ◽  
2018 ◽  
Vol 8 (10) ◽  
pp. 845 ◽  
Author(s):  
Dror Malka ◽  
Gilad Katz

A novel eight-channel demux device based on multicore photonic crystal fiber (PCF) structures that operate in the C-band range (1530–1565 nm) has been demonstrated. The PCF demux design is based on replacing some air-hole areas with lithium niobate and silicon nitride materials over the PCF axis alongside with the appropriate optimizations of the PCF structure. The beam propagation method (BPM) combined with Matlab codes was used to model the demux device and optimize the geometrical parameters of the PCF structure. The simulation results showed that the eight-channel demux can be demultiplexing after light propagation of 5 cm with a large bandwidth (4.03–4.69 nm) and cross-talk (−16.88 to −15.93 dB). Thus, the proposed device has great potential to be integrated into dense wavelength division multiplexing (DWDM) technology for increasing performances in networking systems.


2003 ◽  
Vol 10 (02n03) ◽  
pp. 311-315
Author(s):  
R. W. Peng ◽  
X. Q. Huang ◽  
F. Qiu ◽  
Y. M. Liu ◽  
A. Hu ◽  
...  

We have investigated the structural symmetry and optical properties of the dielectric multilayers. By using the transfer-matrix method, the propagation of electromagnetic wave in the dielectric multilayer film is obtained. It is shown that if a mirror symmetry is induced to the structure, perfect transmissions will definitely happen. And the perfect transmission can be controlled at certain wavelengths if the special structure with symmetry is achieved. Experimental observations are in good agreement with the theoretical predictions. This finding will have potential applications to optoelectric devices, such as the wavelength division multiplexing (WDM) system.


2007 ◽  
Author(s):  
Katarzyna A. Rutkowska ◽  
Urszula A. Laudyn ◽  
Robert T. Rutkowski ◽  
Miroslaw A. Karpierz ◽  
Tomasz R. Wolinski ◽  
...  

2013 ◽  
Vol 760-762 ◽  
pp. 397-400
Author(s):  
Ying Hu ◽  
Gui Qiang Liu ◽  
Xiang Nan Zhang ◽  
Zheng Jie Cai

In this paper, a channel drop filter (CDF) is composed of two cubic lattice circular ring resonator cavities and point micro-cavities in a two-dimensional photonic crystal. The photonic band gap is calculated using the plane wave expansion (PWE) method and the optical characteristics of proposed structure are studying by the finite difference time domain (FDTD) method with perfectly matched layers (PMLs) acting as the boundary conditions . Two different wavelengths centered at 1773 nm and 1742 nm have been successful separation in this CDF. These demonstrate that our proposed structure is suitable for photonic integrated circuits (PICs) and coarse wavelength division multiplexing (WDM) optical communication systems.


Sign in / Sign up

Export Citation Format

Share Document