scholarly journals Evaluation of Deep Learning Methods Efficiency for Malicious and Benign System Calls Classification on the AWSCTD

2019 ◽  
Vol 2019 ◽  
pp. 1-12 ◽  
Author(s):  
Dainius Čeponis ◽  
Nikolaj Goranin

The increasing amount of malware and cyberattacks on a host level increases the need for a reliable anomaly-based host IDS (HIDS) that would be able to deal with zero-day attacks and would ensure low false alarm rate (FAR), which is critical for the detection of such activity. Deep learning methods such as convolutional neural networks (CNNs) and recurrent neural networks (RNNs) are considered to be highly suitable for solving data-driven security solutions. Therefore, it is necessary to perform the comparative analysis of such methods in order to evaluate their efficiency in attack classification as well as their ability to distinguish malicious and benign activity. In this article, we present the results achieved with the AWSCTD (attack-caused Windows OS system calls traces dataset), which can be considered as the most exhaustive set of host-level anomalies at the moment, including 112.56 million system calls from 12110 executable malware samples and 3145 benign software samples with 16.3 million system calls. The best results were obtained with CNNs with up to 90.0% accuracy for family classification and 95.0% accuracy for malicious/benign determination. RNNs demonstrated slightly inferior results. Furthermore, CNN tuning via an increase in the number of layers should make them practically applicable for host-level anomaly detection.

Author(s):  
Samuele Capobianco ◽  
Leonardo M. Millefiori ◽  
Nicola Forti ◽  
Paolo Braca ◽  
Peter Willett

2021 ◽  
Vol 11 (9) ◽  
pp. 3883
Author(s):  
Spyridon Kardakis ◽  
Isidoros Perikos ◽  
Foteini Grivokostopoulou ◽  
Ioannis Hatzilygeroudis

Attention-based methods for deep neural networks constitute a technique that has attracted increased interest in recent years. Attention mechanisms can focus on important parts of a sequence and, as a result, enhance the performance of neural networks in a variety of tasks, including sentiment analysis, emotion recognition, machine translation and speech recognition. In this work, we study attention-based models built on recurrent neural networks (RNNs) and examine their performance in various contexts of sentiment analysis. Self-attention, global-attention and hierarchical-attention methods are examined under various deep neural models, training methods and hyperparameters. Even though attention mechanisms are a powerful recent concept in the field of deep learning, their exact effectiveness in sentiment analysis is yet to be thoroughly assessed. A comparative analysis is performed in a text sentiment classification task where baseline models are compared with and without the use of attention for every experiment. The experimental study additionally examines the proposed models’ ability in recognizing opinions and emotions in movie reviews. The results indicate that attention-based models lead to great improvements in the performance of deep neural models showcasing up to a 3.5% improvement in their accuracy.


2020 ◽  
Author(s):  
Dean Sumner ◽  
Jiazhen He ◽  
Amol Thakkar ◽  
Ola Engkvist ◽  
Esben Jannik Bjerrum

<p>SMILES randomization, a form of data augmentation, has previously been shown to increase the performance of deep learning models compared to non-augmented baselines. Here, we propose a novel data augmentation method we call “Levenshtein augmentation” which considers local SMILES sub-sequence similarity between reactants and their respective products when creating training pairs. The performance of Levenshtein augmentation was tested using two state of the art models - transformer and sequence-to-sequence based recurrent neural networks with attention. Levenshtein augmentation demonstrated an increase performance over non-augmented, and conventionally SMILES randomization augmented data when used for training of baseline models. Furthermore, Levenshtein augmentation seemingly results in what we define as <i>attentional gain </i>– an enhancement in the pattern recognition capabilities of the underlying network to molecular motifs.</p>


Entropy ◽  
2021 ◽  
Vol 23 (2) ◽  
pp. 223
Author(s):  
Yen-Ling Tai ◽  
Shin-Jhe Huang ◽  
Chien-Chang Chen ◽  
Henry Horng-Shing Lu

Nowadays, deep learning methods with high structural complexity and flexibility inevitably lean on the computational capability of the hardware. A platform with high-performance GPUs and large amounts of memory could support neural networks having large numbers of layers and kernels. However, naively pursuing high-cost hardware would probably drag the technical development of deep learning methods. In the article, we thus establish a new preprocessing method to reduce the computational complexity of the neural networks. Inspired by the band theory of solids in physics, we map the image space into a noninteraction physical system isomorphically and then treat image voxels as particle-like clusters. Then, we reconstruct the Fermi–Dirac distribution to be a correction function for the normalization of the voxel intensity and as a filter of insignificant cluster components. The filtered clusters at the circumstance can delineate the morphological heterogeneity of the image voxels. We used the BraTS 2019 datasets and the dimensional fusion U-net for the algorithmic validation, and the proposed Fermi–Dirac correction function exhibited comparable performance to other employed preprocessing methods. By comparing to the conventional z-score normalization function and the Gamma correction function, the proposed algorithm can save at least 38% of computational time cost under a low-cost hardware architecture. Even though the correction function of global histogram equalization has the lowest computational time among the employed correction functions, the proposed Fermi–Dirac correction function exhibits better capabilities of image augmentation and segmentation.


Author(s):  
Mohammadreza Hajiarbabi ◽  
Arvin Agah

Human skin detection is an important and challenging problem in computer vision. Skin detection can be used as the first phase in face detection when using color images. The differences in illumination and ranges of skin colors have made skin detection a challenging task. Gaussian model, rule based methods, and artificial neural networks are methods that have been used for human skin color detection. Deep learning methods are new techniques in learning that have shown improved classification power compared to neural networks. In this paper the authors use deep learning methods in order to enhance the capabilities of skin detection algorithms. Several experiments have been performed using auto encoders and different color spaces. The proposed technique is evaluated compare with other available methods in this domain using two color image databases. The results show that skin detection utilizing deep learning has better results compared to other methods such as rule-based, Gaussian model and feed forward neural network.


2020 ◽  
Vol 14 ◽  
Author(s):  
Yaqing Zhang ◽  
Jinling Chen ◽  
Jen Hong Tan ◽  
Yuxuan Chen ◽  
Yunyi Chen ◽  
...  

Emotion is the human brain reacting to objective things. In real life, human emotions are complex and changeable, so research into emotion recognition is of great significance in real life applications. Recently, many deep learning and machine learning methods have been widely applied in emotion recognition based on EEG signals. However, the traditional machine learning method has a major disadvantage in that the feature extraction process is usually cumbersome, which relies heavily on human experts. Then, end-to-end deep learning methods emerged as an effective method to address this disadvantage with the help of raw signal features and time-frequency spectrums. Here, we investigated the application of several deep learning models to the research field of EEG-based emotion recognition, including deep neural networks (DNN), convolutional neural networks (CNN), long short-term memory (LSTM), and a hybrid model of CNN and LSTM (CNN-LSTM). The experiments were carried on the well-known DEAP dataset. Experimental results show that the CNN and CNN-LSTM models had high classification performance in EEG-based emotion recognition, and their accurate extraction rate of RAW data reached 90.12 and 94.17%, respectively. The performance of the DNN model was not as accurate as other models, but the training speed was fast. The LSTM model was not as stable as the CNN and CNN-LSTM models. Moreover, with the same number of parameters, the training speed of the LSTM was much slower and it was difficult to achieve convergence. Additional parameter comparison experiments with other models, including epoch, learning rate, and dropout probability, were also conducted in the paper. Comparison results prove that the DNN model converged to optimal with fewer epochs and a higher learning rate. In contrast, the CNN model needed more epochs to learn. As for dropout probability, reducing the parameters by ~50% each time was appropriate.


2019 ◽  
Vol 11 (2) ◽  
pp. 196 ◽  
Author(s):  
Omid Ghorbanzadeh ◽  
Thomas Blaschke ◽  
Khalil Gholamnia ◽  
Sansar Meena ◽  
Dirk Tiede ◽  
...  

There is a growing demand for detailed and accurate landslide maps and inventories around the globe, but particularly in hazard-prone regions such as the Himalayas. Most standard mapping methods require expert knowledge, supervision and fieldwork. In this study, we use optical data from the Rapid Eye satellite and topographic factors to analyze the potential of machine learning methods, i.e., artificial neural network (ANN), support vector machines (SVM) and random forest (RF), and different deep-learning convolution neural networks (CNNs) for landslide detection. We use two training zones and one test zone to independently evaluate the performance of different methods in the highly landslide-prone Rasuwa district in Nepal. Twenty different maps are created using ANN, SVM and RF and different CNN instantiations and are compared against the results of extensive fieldwork through a mean intersection-over-union (mIOU) and other common metrics. This accuracy assessment yields the best result of 78.26% mIOU for a small window size CNN, which uses spectral information only. The additional information from a 5 m digital elevation model helps to discriminate between human settlements and landslides but does not improve the overall classification accuracy. CNNs do not automatically outperform ANN, SVM and RF, although this is sometimes claimed. Rather, the performance of CNNs strongly depends on their design, i.e., layer depth, input window sizes and training strategies. Here, we conclude that the CNN method is still in its infancy as most researchers will either use predefined parameters in solutions like Google TensorFlow or will apply different settings in a trial-and-error manner. Nevertheless, deep-learning can improve landslide mapping in the future if the effects of the different designs are better understood, enough training samples exist, and the effects of augmentation strategies to artificially increase the number of existing samples are better understood.


Sign in / Sign up

Export Citation Format

Share Document