scholarly journals Tension-Compression Damage Model with Consistent Crack Bandwidths for Concrete Materials

2019 ◽  
Vol 2019 ◽  
pp. 1-16 ◽  
Author(s):  
Wei He ◽  
Ying Xu ◽  
Yu Cheng ◽  
Peng-Fei Jia ◽  
Ting-Ting Fu

This paper proposes a tension-compression damage model for concrete materials, formulated within the framework of thermodynamics of irreversible processes. The aim of this work is to solve the following problems: the premature divergence of numerical solutions under general loading conditions due to the conflict of tensile and compressive damage bounding surfaces, which is a result of the application of the spectral decomposition method to distinguish tension and compression, and the unsatisfactory reproduction of distinct tension-compression behaviors of concrete by strain-driven damage models. The former is solved by the sign of the volumetric deformation, while the latter is solved via two separated dissipation mechanisms. Moreover, of specific interest is an improved solution to the problem of mesh-size dependency using consistent crack bandwidths, which takes into account situations with irregular meshes and arbitrary crack directions in the context of the crack band approach. The performance of the model is validated by the well-documented experimental data. The simplicity and the explicit integration of the constitutive equations render the model well suitable for large-scale computations.

2012 ◽  
Vol 5 (1) ◽  
pp. 26-37 ◽  
Author(s):  
J. J. C. Pituba ◽  
M. M. S. Lacerda

This work presents one and two-dimensional numerical analyses using isotropic and anisotropic damage models for the concrete in order to discuss the advantages of these modeling. Initially, it is shortly described the damage model proposed by Mazars. This constitutive model assumes the concrete as isotropic and elastic material, where locally the damage is due to extensions. On the other hand, the damage model proposed by Pituba, the material is assumed as initial elastic isotropic medium presenting anisotropy, plastic strains and bimodular response (distinct elastic responses whether tension or compression stress states prevail) induced by the damage. To take into account for bimodularity two damage tensors governing the rigidity in tension and compression regimes, respectively, are introduced. Damage activation is expressed by two criteria indicating the initial and further evolution of damage. Soon after, the models are used in numerical analyses of the mechanical behavior of reinforced concrete structures. Accordingly with comparison of the obtained responses, considerations about the application of the isotropic and anisotropic damage models are presented for 1D and 2D reinforced concrete structures modeling as well as the potentialities of the simplified versions of damage models applied in situations of structural engineering.


2013 ◽  
Vol 22 (5-6) ◽  
pp. 149-159
Author(s):  
Ziad N. Taqieddin ◽  
George Z. Voyiadjis

AbstractIn the non-linear finite element analysis (NFEA) of concrete materials, continuum damage mechanics (CDM) provides a powerful framework for the derivation of constitutive models capable of describing the mechanical behavior of such materials. The internal state variables of CDM can be introduced to the elastic analysis of concrete to form elastic-damage models (no inelastic strains), or to the elastic-plastic analysis in order to form coupled/uncoupled elastic-plastic-damage models. Experimental evidence that is well documented in literature shows that the susceptibility of concrete to damage and failure is distinguished under deviatoric loading from that corresponding to hydrostatic loading. A reduction factor is usually introduced into a CDM model to reduce the susceptibility of concrete to hydrostatic stresses/strains. In this work, the effect of a hydrostatic stress/strain reduction factor on the performances of two NFEA concrete models will be studied. These two (independently published) models did not provide any results showing such effect. One of these two models is an elastic-damage model, whereas the other is an uncoupled elastic-plastic-damage model. Simulations and comparisons are carried out between the performances of the two models under uniaxial tensile and compressive loading conditions. Simulations are also provided for the uncoupled elastic-plastic-damage model under the following additional loading conditions: biaxial tension and biaxial compression, uniaxial cyclic loading, and varying ratios of triaxial compressive loadings. These simulations clearly show the effect of the reduction factor on the numerically depicted behaviors of concrete materials. To have rational comparisons, the hydrostatic stress reduction factor applied to each model is chosen to be a function of the internal state variables common to both models. Therefore, once the two models are calibrated to simulate the experimental behaviors, their corresponding reduction factors are readily available at every increment of the iterative NFEA procedures.


2012 ◽  
Vol 12 (12) ◽  
pp. 3733-3752 ◽  
Author(s):  
B. Jongman ◽  
H. Kreibich ◽  
H. Apel ◽  
J. I. Barredo ◽  
P. D. Bates ◽  
...  

Abstract. There is a wide variety of flood damage models in use internationally, differing substantially in their approaches and economic estimates. Since these models are being used more and more as a basis for investment and planning decisions on an increasingly large scale, there is a need to reduce the uncertainties involved and develop a harmonised European approach, in particular with respect to the EU Flood Risks Directive. In this paper we present a qualitative and quantitative assessment of seven flood damage models, using two case studies of past flood events in Germany and the United Kingdom. The qualitative analysis shows that modelling approaches vary strongly, and that current methodologies for estimating infrastructural damage are not as well developed as methodologies for the estimation of damage to buildings. The quantitative results show that the model outcomes are very sensitive to uncertainty in both vulnerability (i.e. depth–damage functions) and exposure (i.e. asset values), whereby the first has a larger effect than the latter. We conclude that care needs to be taken when using aggregated land use data for flood risk assessment, and that it is essential to adjust asset values to the regional economic situation and property characteristics. We call for the development of a flexible but consistent European framework that applies best practice from existing models while providing room for including necessary regional adjustments.


2004 ◽  
Vol 31 (6) ◽  
pp. 1012-1023 ◽  
Author(s):  
Hasan Orhun Köksal ◽  
Bilge Doran ◽  
Ayse Elif Ozsoy ◽  
Sema Noyan Alacali

Since only a limited number of experimental and analytical studies have been carried out for the purpose of developing strength design procedures for reinforced blockwork masonry columns, there is a certain need for further studies that reflect material properties and behavior of blockwork masonry more closely. This paper deals with a nonlinear finite element modeling of the concentrically loaded reinforced blockwork masonry columns making use of both elasto-plastic and isotropic damage models. If the damage model is enriched with the introduction of a simple relation for the material damage parameter that accounts for the mesh size effect, three-dimensional finite element analyses of columns for the well-known experimental works in the literature are accomplished. Finally, the predictions from both the numerical analyses and the existing expressions for the ultimate load of the masonry columns are compared with the experimental results.Key words: compressive strength, reinforced blockwork masonry column, finite element method, Drucker-Prager yield criterion, isotropic damage theory.


2012 ◽  
Vol 504-506 ◽  
pp. 845-850 ◽  
Author(s):  
M.S. Niazi ◽  
H.H. Wisselink ◽  
V. Timo Meinders

Local damage models are known to produce pathological mesh dependence in finite element simulations. The solution is to either use a regularization technique or to adopt a non-local damage model. Viscoplasticity is one technique which can regularize the mesh dependence of local damage model by incorporating a physical phenomenon in the constitutive model i.e. rate effects. A detailed numerical study of viscoplastic regularization is carried out in this work. Two case studies were considered i.e. a bar with shear loading and a sheet metal under tensile loading. The influence of hardening / softening parameters, prescribed deformation rate and mesh size on the regularization was studied. It was found that the primary viscoplastic length scale is a function of hardening and softening parameters but does not depend upon the deformation rate. Mesh dependency appeared at higher damage values. This mesh dependence can be reduced by mesh refinement in the localized region and also by increasing the deformation rates. The viscoplastic regularization was successfully used with a local anisotropic damage model to predict failure in a cross die drawing process with the actual physical process parameters.


2013 ◽  
Vol 838-841 ◽  
pp. 705-709
Author(s):  
Yun Hao Yang ◽  
Ren Kun Wang

Large scale underground caverns are under construction in high in-situ stress field at Houziyan hydropower station. To investigate deformation and damage of surrounding rock mass, a elastoplastic orthotropic damage model capable of describing induced orthotropic damage and post-peak behavior of hard rock is used, together with a effective approach accounting for the presence of weak planes. Then a displacement based back analysis was conducted by using the measured deformation data from extensometers. The computed displacements are in good agreement with the measured ones at most of measurement points, which confirm the validities of constitutive model and numerical simulation model. The result of simulation shows that damage of surrounding rock mass is mainly dominated by the high in-situ stress rather than the weak planes and heavy damage occur at the cavern shoulders and side walls.


2011 ◽  
Vol 21 (5) ◽  
pp. 713-754 ◽  
Author(s):  
M. S. Niazi ◽  
H. H. Wisselink ◽  
T. Meinders ◽  
J. Huétink

The Lemaitre's continuum damage model is well known in the field of damage mechanics. The anisotropic damage model given by Lemaitre is relatively simple, applicable to nonproportional loads and uses only four damage parameters. The hypothesis of strain equivalence is used to map the effective stress to the nominal stress. Both the isotropic and anisotropic damage models from Lemaitre are implemented in an in-house implicit finite element code. The damage model is coupled with an elasto-plastic material model using anisotropic plasticity (Hill-48 yield criterion) and strain-rate dependent isotropic hardening. The Lemaitre continuum damage model is based on the small strain assumption; therefore, the model is implemented in an incremental co-rotational framework to make it applicable for large strains. The damage dissipation potential was slightly adapted to incorporate a different damage evolution behavior under compression and tension. A tensile test and a low-cycle fatigue test were used to determine the damage parameters. The damage evolution was modified to incorporate strain rate sensitivity by making two of the damage parameters a function of strain rate. The model is applied to predict failure in a cross-die deep drawing process, which is well known for having a wide variety of strains and strain path changes. The failure predictions obtained from the anisotropic damage models are in good agreement with the experimental results, whereas the predictions obtained from the isotropic damage model are slightly conservative. The anisotropic damage model predicts the crack direction more accurately compared to the predictions based on principal stress directions using the isotropic damage model. The set of damage parameters, determined in a uniaxial condition, gives a good failure prediction under other triaxiality conditions.


2021 ◽  
Vol 8 ◽  
Author(s):  
Teng Tong ◽  
Changqing Du ◽  
Xiaofan Liu ◽  
Siqi Yuan ◽  
Zhao Liu

Time-dependent responses of cracked concrete structures are complex, due to the intertwined effects between creep, shrinkage, and cracking. There still lacks an effective numerical model to accurately predict their nonlinear long-term deflections. To this end, a computational framework is constructed, of which the aforementioned intertwined effects are properly treated. The model inherits merits of gradient-enhanced damage (GED) model and microprestress-solidification (MPS) theory. By incorporating higher order deformation gradient, the proposed GED-MPS model circumvents damage localization and mesh-sensitive problems encountered in classical continuum damage theory. Moreover, the model reflects creep and shrinkage of concrete with respect to underlying moisture transport and heat transfer. Residing on the Kelvin chain model, rate-type creep formulation works fully compatible with the gradient nonlocal damage model. 1-D illustration of the model reveals that the model could regularize mesh-sensitivity of nonlinear concrete creep affected by cracking. Furthermore, the model depicts long-term deflections and cracking evolutions of simply-supported reinforced concrete beams in an agreed manner. It is noteworthy that the gradient nonlocal enhanced microprestress-solidification theory is implemented in the general finite element software Abaqus/Standard with the implicit solver, which renders the model suitable for large-scale creep-sensitive structures.


2009 ◽  
Vol 41 (1) ◽  
pp. 247-269 ◽  
Author(s):  
Maude Gathy ◽  
Claude Lefèvre

This paper is concerned with a nonstationary Markovian chain of cascading damage that constitutes an iterated version of a classical damage model. The main problem under study is to determine the exact distribution of the total outcome of this process when the cascade of damages finally stops. Two different applications are discussed, namely the final size for a wide class of SIR (susceptible → infective → removed) epidemic models and the total number of failures for a system of components in reliability. The starting point of our analysis is the recent work of Lefèvre (2007) on a first-crossing problem for the cumulated partial sums of independent parametric distributions, possibly nonstationary but stable by convolution. A key mathematical tool is provided by a nonstandard family of remarkable polynomials, called the generalised Abel–Gontcharoff polynomials. Somewhat surprisingly, the approach followed will allow us to relax some model assumptions usually made in epidemic theory and reliability. To close, approximation by a branching process is also investigated to a certain extent.


Sign in / Sign up

Export Citation Format

Share Document