Studying the effect of a hydrostatic stress/strain reduction factor on damage mechanics of concrete materials

2013 ◽  
Vol 22 (5-6) ◽  
pp. 149-159
Author(s):  
Ziad N. Taqieddin ◽  
George Z. Voyiadjis

AbstractIn the non-linear finite element analysis (NFEA) of concrete materials, continuum damage mechanics (CDM) provides a powerful framework for the derivation of constitutive models capable of describing the mechanical behavior of such materials. The internal state variables of CDM can be introduced to the elastic analysis of concrete to form elastic-damage models (no inelastic strains), or to the elastic-plastic analysis in order to form coupled/uncoupled elastic-plastic-damage models. Experimental evidence that is well documented in literature shows that the susceptibility of concrete to damage and failure is distinguished under deviatoric loading from that corresponding to hydrostatic loading. A reduction factor is usually introduced into a CDM model to reduce the susceptibility of concrete to hydrostatic stresses/strains. In this work, the effect of a hydrostatic stress/strain reduction factor on the performances of two NFEA concrete models will be studied. These two (independently published) models did not provide any results showing such effect. One of these two models is an elastic-damage model, whereas the other is an uncoupled elastic-plastic-damage model. Simulations and comparisons are carried out between the performances of the two models under uniaxial tensile and compressive loading conditions. Simulations are also provided for the uncoupled elastic-plastic-damage model under the following additional loading conditions: biaxial tension and biaxial compression, uniaxial cyclic loading, and varying ratios of triaxial compressive loadings. These simulations clearly show the effect of the reduction factor on the numerically depicted behaviors of concrete materials. To have rational comparisons, the hydrostatic stress reduction factor applied to each model is chosen to be a function of the internal state variables common to both models. Therefore, once the two models are calibrated to simulate the experimental behaviors, their corresponding reduction factors are readily available at every increment of the iterative NFEA procedures.

2011 ◽  
Vol 243-249 ◽  
pp. 313-318 ◽  
Author(s):  
Hu Qi ◽  
Yun Gui Li ◽  
Xi Lin Lu

In this paper, an elastic plastic damage model is presented based on the combined use of elastic plastic constitutive equations along with continuum damage mechanics. A tensile and a compressive damage variable are adopted to describe the different responses of concrete under tension and compression, respectively. The Helmholtz Free Energy is decomposed into hydrostatic stress component and deviatoric stress components. The hydrostatic stress component is neglected and the deviatoric stress component is amended according to stress state, resulting in a more accurate description of the concrete’s response under multi-axial stress state. Finally, through several numerical simulations it is proved that the proposed model has the capability of simulating typical nonlinear performances of concrete material.


2014 ◽  
Vol 488-489 ◽  
pp. 799-802
Author(s):  
Hong Jie Chen ◽  
Wei Ya Xu ◽  
Ru Bin Wang ◽  
Wei Wang

With complex mechanics character and under the action of compression and tension in tri-direction, rock will show coupled plastic-damage mechanism as its basic character. Phenomenological coupled elastic-plastic-damage constitutive model with internal variable is proposed based on thermal mechanics theory, elastic law and macro damage mechanics. Numerical experiments on this model and analyze the model character. The result shows that the coupling model could realize rocks softening behavior brought about by damage and strength enlargement caused by confining pressure increasing.


2018 ◽  
Author(s):  
Sorabh Singhal ◽  
Yogeshwar Jasra ◽  
Ravindra K. Saxena

In the present work, Stress corrosion cracking (SCC) and its mechanical behavior are presented. SCC represents complex behavior due to electrochemical and mechanical interaction. Damage models are proposed to predict crack initiation time for stainless steel under constant load using the concept of continuum damage mechanics to show incremental damage accumulation which finally leads to failure of the material. Two damage models applicable to prediction of damage in SCC, Lemaitre damage model and damage driving force model proposed by Kamaya are compared. The comparative study of the results obtained by these damage models shows that in Lemaitre damage law cracks initiate randomly while in damage driving force model the stress concentration occurs around the periphery of damaged element results in increased damage force. The study can be used to estimate the crack initiation time in SCC under corrosive atmosphere.


2014 ◽  
Vol 1065-1069 ◽  
pp. 2099-2103
Author(s):  
Hu Qi ◽  
Yun Gui Li

The most widely used multi-axial concrete models including elastic-plastic model and elastic plastic damage model are expounded and it is recognized that the elastic plastic damage model is more reasonable to reflect nonlinear characteristic of concrete. The development and application of elastic plastic damage model is comprehensively appraised and a practical elastic plastic damage constitutive model is established. Finally the dynamic trend of constitutive model of concrete development is introduced.


Author(s):  
Sayed A. Nassar ◽  
Jianghui Mao ◽  
Xianjie Yang ◽  
Douglas Templeton

A proposed damage model is used for investigating the deformation and interfacial failure behavior of an adhesively bonded single-lap thick joint made of S2 glass/SC-15 epoxy resin composite material. The bonding material is 3M Scotch-Weld Epoxy Adhesive DP405 Black. Continuum damage mechanics models are used to describe the damage initiation and final failure at or near the interface. The effect of adhesive overlap length, thickness, and plasticity on the interfacial shear and normal stresses is studied. Experimental and analytical data are used to validate the proposed damage models.


2007 ◽  
Vol 353-358 ◽  
pp. 1145-1148 ◽  
Author(s):  
X.J. Yu ◽  
Zhen Fang ◽  
Shan Yong Wang ◽  
Yun Yan ◽  
Jian Hua Yin

An Elastic Plastic-Damage (EPD) model is developed to model the softening behaviour of the cement-soil admixture based on continuous damage mechanics. The softening behaviour is considered to be characteristic outcome of the material degradation due to damage in material. Material degradation is modelled by reducing progressively the stiffness and yield stress of the material when the damage variable has attained a critical index. The basic equations of the model are derived and presented. A Fortran program for this model has been developed and implemented into a finite element code ABAQUS. In order to evaluate the applicability of this model, several unconfined compression tests are simulated using ABAQUS with this model. The computed results are compared with measured data and good agreement is achieved.


2015 ◽  
Vol 2015 ◽  
pp. 1-13
Author(s):  
Feng Zhou ◽  
Guangxu Cheng

A coupled plastic damage model with two damage scalars is proposed to describe the nonlinear features of concrete. The constitutive formulations are developed by assuming that damage can be represented effectively in the material compliance tensor. Damage evolution law and plastic damage coupling are described using the framework of irreversible thermodynamics. The plasticity part is developed without using the effective stress concept. A plastic yield function based on the true stress is adopted with two hardening functions, one for tensile loading history and the other for compressive loading history. To couple the damage to the plasticity, the damage parameters are introduced into the plastic yield function by considering a reduction of the plastic hardening rate. The specific reduction factor is then deduced from the compliance tensor of the damaged material. Finally, the proposed model is applied to plain concrete. Comparison between the experimental data and the numerical simulations shows that the proposed model is able to describe the main features of the mechanical performances observed in concrete material under uniaxial, biaxial, and cyclic loadings.


Sign in / Sign up

Export Citation Format

Share Document