scholarly journals Experimental Study on the Application of BOTDA in the Overlying Strata Deformation Monitoring Induced by Coal Mining

2019 ◽  
Vol 2019 ◽  
pp. 1-9 ◽  
Author(s):  
Jing Chai ◽  
Wengang Du

The coal mine working face overlying strata is often disturbed by multiple mining, leading to adverse effects on the working face’s safe production and ground surface movement. In the three-dimensional physical model test with the size of 3000×2000×2000 mm, after the overburden gets stable when the first working face had been extracted, by using three vertical distributed optical fibers based on the BOTDA principle, the deformation law of the overburden caused by the contiguous coal face mining is studied. Results show that, before the working face advanced to 840 mm (near the fiber), the stress law of the overburden was as follows: the middle of the model was under pressure state and the remaining part was under tension state, and the key stratum produced stress concentration phenomena caused by the secondary mining; when the face advanced to 840 mm (through the fiber), the frequency shift curve of the key stratum and the strata on it combined, and the stress concentration in the key stratum disappeared, indicating that the bearing structure of the key stratum gets unstable; compared with the previous monitoring data, when the working face far away from the fiber, the information reflected by the frequency shift data gradually gets single when the working face is far away from the fiber compared with the previous measurement data. The overburden deformation increased dramatically after the key stratum gets unstable. The surrounding rock and fiber will detach when the stratum goes though large deformation such as abscission layer, fracture, and collapse, and the frequency shift monitored by BOTDA cannot characterize the rock deformation in this situation. The experimental method and the results of this paper serve as useful reference for the application of BOTDA technology in geotechnical engineering.

2019 ◽  
Vol 16 (5) ◽  
pp. 913-925
Author(s):  
Jianlin Xie ◽  
Jialin Xu

Abstract Existing studies mostly focus on the stress change of coal in front of a goaf, but rarely conduct field monitoring on the internal pressure of a goaf, primarily due to the complex environment and other restrictive conditions of goafs. This paper first used physical simulation to monitor and analyze the internal pressure of goaf and found that goaf pressure presented a stepwise growth with the key stratum breaking. In addition, field measurements were conducted to monitor the goaf pressures of two different working faces. Goaf pressures both presented linear growth with the advance of the working face. According to comparative analysis, there were some differences between the two monitoring methods in terms of the corresponding relationship. This reflects that in the actual rock mass, after the breaking of a key stratum, the loads of the strata under its control are not transferred to the goaf instantaneously and load transfer characteristics are probably related to roof separation distribution characteristics of overlying strata, the bulking characteristics of caved rock mass, lateral stress limitation and other factors. The results of this study will offer some guidance for studies on the movement laws of overlying strata and the load transfer of overlying strata above goafs.


Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Fengnian Wang ◽  
Shizhuang Chen ◽  
Pan Gao ◽  
Zhibiao Guo ◽  
Zhigang Tao

In this study, the deformation characteristics and mechanical properties of coal and rock mass in the S2N5 working face of the Xiaokang coal mine are analyzed to address the problem of large deformation of soft rocks with high in situ stress surrounding roadways. Through a newly developed grouting pipe, a double-shell grouting technology, consisting of low-pressure grouting and high-pressure split grouting, is proposed for the Xiaokang coal mine. In addition, the effect of grouting is evaluated by borehole peeping and deformation monitoring. The results show that the double-shell grouting technology can effectively improve the overall mechanical properties of the surrounding coal and rock mass, preventing the large deformation and failure of the roadway. This technology can be useful when analyzing and preventing large deformation of soft rock roadways.


2021 ◽  
Vol 2021 ◽  
pp. 1-20
Author(s):  
Zhengkai Yang ◽  
Zhiheng Cheng ◽  
Zhenhua Li ◽  
Chunyuan Li ◽  
Lei Wang ◽  
...  

The aim of this study is to obtain movement laws of overlying strata above a fully mechanized coal mining face backfilled with gangue and solve the problem of surface subsidence during coal mining. This study was carried out based on gangue backfilling mining of Jiulishan Coal Mine (Jiaozuo City, Henan Province, China) from the perspectives of deformation of backfilled gangue under compaction, surrounding rock of a stope, and activities of key strata. The method combining with rock mechanics, viscoelastic mechanics, control theory of rock mass under mining, and numerical simulation was used based on physical and mechanical characteristics of backfilled gangue. On this basis, the research analyzed the temporal-spatial relationships of activities of surrounding rock of the stope, compressive deformation of backfilling body, failure depth of the floor, deformation characteristics of the main roof with laws of surface subsidence. The movement characteristics of overlying strata above the fully mechanized coal mining face backfilled with gangue and the traditional fully mechanized mining face were compared. It is found that, under the same conditions of overlying strata, movement laws of overlying strata are mainly determined by the mining height of coal seams and the heights of a caving zone and a fracture zone are nearly linearly correlated with the mining height. Through analysis based on thin-plate theory and key stratum theory, the location of the main roof of the fully mechanized coal mining face backfilled with gangue in coal seams first bending and sinking due to load of overlying strata was ascertained. Then, it was determined that there are two key strata and the main roof belongs to the inferior key stratum. By using the established mechanical model for the main roof of the fully mechanized coal mining face backfilled with gangue and the calculation formula for the maximum deflection of the main roof, this research presented the conditions for breaking of the main roof. In addition, based on the theoretical analysis, it is concluded that the main roof of the fully mechanized coal mining face backfilled with gangue does not break, but bends. The numerical simulation results demonstrate that, with the continuous increase of strength of backfilled gangue, the stress concentration degree of surrounding rock reduces constantly, so does its decrease amplitude. Moreover, the compressive deformation of backfilling, failure depth of the floor, and bending and subsidence of the main roof continuously decrease and tend to be stable. The mechanical properties of backfilling materials determine effects of gangue backfilling in controlling surface subsidence. Gangue backfilling can effectively control movement of overlying strata and surface subsidence tends to be stable with the increase of elastic modulus of gangue.


2018 ◽  
Vol 2018 ◽  
pp. 1-14 ◽  
Author(s):  
Jie Fang ◽  
Lei Tian ◽  
Yanyan Cai ◽  
Zhiguo Cao ◽  
Jinhao Wen ◽  
...  

The water inrush of a working face is the main hidden danger to the safe mining of underwater coal seams. It is known that the development of water-flowing fractured zones in overlying strata is the basic path which causes water inrushes in working faces. In the engineering background of the underwater mining in the Longkou Mining Area, the analysis model and judgment method of crack propagation were created on the basis of the Mohr–Coulomb criterion. Fish language was used to couple the extension model into the FLAC3d software, in order to simulate the mining process of the underwater coal seam, as well as to analyze the initiation evolutionary characteristics and seepage laws of the fractured zones in the overlying strata during the advancing processes of the working face. The results showed that, during the coal seam mining process, the mining fractured zones which had been caused by the compression-shear and tension-shear were mainly concentrated in the overlying strata of the working face. Also, the open-off cut and mining working face were the key sections of the water inrush in the rock mass. The condition of the water disaster was the formation of a water inrush channel. The possible water inrush channels in underwater coal mining are mainly composed of water-flowing fractured zones which are formed during the excavation processes. The numerical simulation results were validated through the practical engineering of field observations on the height of water-flowing fractured zone, which displayed a favorable adaptability.


2020 ◽  
Vol 2020 ◽  
pp. 1-15
Author(s):  
Yong Zhang ◽  
Huichen Xu ◽  
Peng Song ◽  
Xiaoming Sun ◽  
Manchao He ◽  
...  

The stress concentration of gob-side entry surrounding rock is a hot topic in coal mining. In this paper, through theoretical analysis and numerical simulation, the pressure relief mechanism of the gob-side entry retaining by roof cutting and pressure release (RCPR) and the spatiotemporal development law of surrounding rock stress of the gob-side entry were analyzed. The studies showed that the gob-side entry retaining by RCPR shortened the length of the lateral cantilever by directional roof cutting, which weakened the stress level of the gob-side entry. In the meantime, the goaf gangues could play a good filling role by using their breaking and swelling characteristics under the action of gangue-blocking supports and further optimized the stress environment along the roadway. Field industrial tests verified that the gob-side entry retaining by RCPR had a significant effect on pressure relief, and the surrounding rock stress and deformation tended to stabilize after about 160 m of lagging working face. Numerical analysis reproduced the whole process of “mining-retention-using” of roof cutting roadway and revealed that surrounding rocks were always in the zone of relative stress reduction during the whole process. The peak value of mining-induced lateral stress was about 10 m away from the middle point of the gob-side entry. The change of surrounding rock stress could be divided into three stages: significant increase, dynamic adjustment, and stable stage. However, during the second mining, the stress connected zone would appear on the leading working face, and the stress concentration in this zone was significant. Based on the above analysis, we concluded that the new technology could be applied to the medium-thickness coal seam in the composite roof.


2013 ◽  
Vol 353-356 ◽  
pp. 1555-1558
Author(s):  
Ke Wu ◽  
Ke Zhang ◽  
Cheng Jun Wang ◽  
Chuang Zhao

The deformation monitoring of surrounding rock and data processing in tunnel is the foundation and safety technical support of underground engineering information control and management. However, due to the special environment in the underground engineering construction, acquiring the deformation information of surrounding rock accurately and fast to assess the stability of surrounding rock is becoming one of the bottleneck problems for underground construction project information to be solved. According to the underground engineering projects, Based on the dynamic monitoring data processing and analysis, a set of underground engineering construction monitoring measurement data processing system is established, which can meet the acquisition of the monitoring measurement data, the arrangement of the measured data, data analysis and feedback, the monitoring data regression analysis.


2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
Ke Yang ◽  
Xiaolou Chi ◽  
Wenjie Liu ◽  
Litong Dou ◽  
Zhen Wei

A strong ground pressure in the multiseam environment manifested by rib spalling and roadway deformation at the fully mechanized working face was assessed by a comprehensive combination of field measurements, physical simulations, and theoretical analysis for two coal seams in the Buertai Coal Mine in China. A structural model of overlying stratum collapse at the working face with the key stratum breaking instability was proposed, the mechanism of strong ground pressure at the longwall top coal caving working face with a single key stratum in goaf was identified, and respective control countermeasures were developed. The latter implied the directional hydraulic fracturing for supporting the key stratum-surrounding rocks, which effectively reduced the cyclic weighting intensity and weighting interval in the working face with a single key stratum in the goaf. The working face cyclic breaking interval was assessed at 30 m. After the key stratum collapse, soft rocks underwent synergistic deformation and a cutting-type failure. The goaf effect on the hydraulic support resistance in the fully mechanized working face was assessed, and cutting blocks from the overlying stratum collapse were identified as the main sources of strong ground pressure.


2019 ◽  
Vol 2019 ◽  
pp. 1-19 ◽  
Author(s):  
Yang Li ◽  
Tianhong Yang ◽  
Weidong Song ◽  
Ling Yu

Because of the unique natural geography, geological structure, and ecological environment, there are serious geological disasters and environmental damage caused by the high-intensity mining in Western China. It seriously restricts the development of coal resources and the protection of ecological environment. In order to fully capture the law of key stratum breakage with high-intensity mining, the IMS microseismic system was introduced into Xiaojihan coal mine which is a typical high-intensity mining mine in Western China, and the whole process dynamic monitoring was carried out. The process of key stratum breakage was analysed by MS data, which were in agreement with the pressure analysis results of the hydraulic support of the working face. The results showed that there were the obvious forewarning characteristics in microseismic event number, energy release, energy index, Schmidt number, coefficient of seismic response, and b value when the key stratum was breaking. Then, a method to discriminate the breakage of key stratum was proposed by using the forewarning characteristics, which could provide the guidance for prevention and control of geological hazards in the working face with high-intensity mining.


2020 ◽  
Vol 2020 ◽  
pp. 1-13 ◽  
Author(s):  
Fulian He ◽  
Xiaobin Li ◽  
Wenrui He ◽  
Yongqiang Zhao ◽  
Zhuhe Xu ◽  
...  

Longwall mechanized top coal caving mining (LMTCCM) in extra-thick coal seams has its own characteristics. The law of mining pressure and overlying strata failure height in extra-thick coal seams are much larger than those of medium-thick and thick coal seams. The key stratum structure morphology also has an important influence on the law of overlying strata movement and stability of surrounding rock. Based on the engineering geological conditions, this paper used the method of theoretical analysis and numerical simulation to study the key stratum structure morphology of LMTCCM in extra-thick coal seams. The results show that under the condition of LMTCCM in extra-thick coal seams, the key stratum forms the structure of low cantilever beam and high hinged rock beam. With the increase of coal seam thickness, the breaking position of cantilever beam is closer to the coal wall. Through theoretical calculation, it is obtained that the breaking length of cantilever beam is 31.5 m and the breaking position of cantilever beam is 15.4 m away from coal wall. With the increase of cycle, key strata will undergo the evolution law from the generation of longitudinal cracks to the hinged structure and then to the cantilever beam structure. The breakage of key strata will cause the expansion of longitudinal cracks and the overall synchronous movement of overlying strata. With the increase of coal seam thickness, the distribution of longitudinal cracks will gradually transfer from the upper part of goaf to the deep part of coal body in space and increase in quantity. This research is of great significance for improving the stability of overlying strata and ensuring the safe and efficient mining of extra-thick coal seams.


Sign in / Sign up

Export Citation Format

Share Document