scholarly journals Biofilm Formation and Detection of Fluoroquinolone- and Carbapenem-Resistant Genes in Multidrug-Resistant Acinetobacter baumannii

Author(s):  
María-Guadalupe Avila-Novoa ◽  
Oscar-Alberto Solís-Velázquez ◽  
Daniel-Eduardo Rangel-López ◽  
Jean-Pierre González-Gómez ◽  
Pedro-Javier Guerrero-Medina ◽  
...  

Acinetobacter baumannii is an important opportunistic pathogen that shows resistance to cephalosporins, penicillins, carbapenems, fluoroquinolones, and aminoglycosides, the multiresistance being associated with its ability to form biofilms in clinical environments. The aim of this study was to determine biofilm formation and its potential association with genes involved in antibiotic resistance mechanisms of A. baumannii isolates of different clinical specimens. We demonstrated 100% of the A. baumannii isolates examined to be multidrug resistant (MDR), presenting a 73.3% susceptibility to cefepime and a 53.3% susceptibility to ciprofloxacin. All A. baumannii isolates were positive for blaOXA-51, 33.3% being positive for blaOXA-23 and ISAba1, and 73.3% being positive for gyrA. We found 86.6% of A. baumannii strains to be low-grade biofilm formers and 13.3% to be biofilm negative; culturing on Congo red agar (CRA) plates revealed that 73.3% of the A. baumannii isolates to be biofilm producers, while 26.6% were not. These properties, combined with the role of A. baumannii as a nosocomial pathogen, increase the probability of A. baumannii causing nosocomial infections and outbreaks as a complication during therapeutic treatments and emphasize the need to control A. baumannii biofilms in hospital environments.

2015 ◽  
Vol 59 (8) ◽  
pp. 4817-4825 ◽  
Author(s):  
Xinlong He ◽  
Feng Lu ◽  
Fenglai Yuan ◽  
Donglin Jiang ◽  
Peng Zhao ◽  
...  

ABSTRACTChronic wound infections are associated with biofilm formation, which in turn has been correlated with drug resistance. However, the mechanism by which bacteria form biofilms in clinical environments is not clearly understood. This study was designed to investigate the biofilm formation potency ofAcinetobacter baumanniiand the potential association of biofilm formation with genes encoding efflux pumps, quorum-sensing regulators, and outer membrane proteins. A total of 48 clinically isolatedA. baumanniistrains, identified by enterobacterial repetitive intergenic consensus (ERIC)-PCR as types A-II, A-III, and A-IV, were analyzed. Three representative strains, which were designatedA. baumanniiABR2, ABR11, and ABS17, were used to evaluate antimicrobial susceptibility, biofilm inducibility, and gene transcription (abaI,adeB,adeG,adeJ,carO, andompA). A significant increase in the MICs of different classes of antibiotics was observed in the biofilm cells. The formation of a biofilm was significantly induced in all the representative strains exposed to levofloxacin. The levels of gene transcription varied between bacterial genotypes, antibiotics, and antibiotic concentrations. The upregulation ofadeGcorrelated with biofilm induction. The consistent upregulation ofadeGandabaIwas detected in A-III-typeA. baumanniiin response to levofloxacin and meropenem (1/8 to 1/2× the MIC), conditions which resulted in the greatest extent of biofilm induction. This study demonstrates a potential role of the AdeFGH efflux pump in the synthesis and transport of autoinducer molecules during biofilm formation, suggesting a link between low-dose antimicrobial therapy and a high risk of biofilm infections caused byA. baumannii. This study provides useful information for the development of antibiofilm strategies.


2013 ◽  
Vol 79 (21) ◽  
pp. 6535-6543 ◽  
Author(s):  
H. M. Sharon Goh ◽  
Scott A. Beatson ◽  
Makrina Totsika ◽  
Danilo G. Moriel ◽  
Minh-Duy Phan ◽  
...  

ABSTRACTAcinetobacter baumanniiis a multidrug-resistant pathogen associated with hospital outbreaks of infection across the globe, particularly in the intensive care unit. The ability ofA. baumanniito survive in the hospital environment for long periods is linked to antibiotic resistance and its capacity to form biofilms. Here we studied the prevalence, expression, and function of theA. baumanniibiofilm-associated protein (Bap) in 24 carbapenem-resistantA. baumanniiST92 strains isolated from a single institution over a 10-year period. Thebapgene was highly prevalent, with 22/24 strains being positive forbapby PCR. Partial sequencing ofbapwas performed on the index case strain MS1968 and revealed it to be a large and highly repetitive gene approximately 16 kb in size. Phylogenetic analysis employing a 1,948-amino-acid region corresponding to the C terminus of Bap showed that BapMS1968clusters with Bap sequences from clonal complex 2 (CC2) strains ACICU, TCDC-AB0715, and 1656-2 and is distinct from Bap in CC1 strains. By using overlapping PCR, thebapMS1968gene was cloned, and its expression in a recombinantEscherichia colistrain resulted in increased biofilm formation. A Bap-specific antibody was generated, and Western blot analysis showed that the majority ofA. baumanniistrains expressed an ∼200-kDa Bap protein. Further analysis of three Bap-positiveA. baumanniistrains demonstrated that Bap is expressed at the cell surface and is associated with biofilm formation. Finally, biofilm formation by these Bap-positive strains could be inhibited by affinity-purified Bap antibodies, demonstrating the direct contribution of Bap to biofilm growth byA. baumanniiclinical isolates.


Biomolecules ◽  
2020 ◽  
Vol 10 (8) ◽  
pp. 1186 ◽  
Author(s):  
Chaitany Jayprakash Raorane ◽  
Jin-Hyung Lee ◽  
Jintae Lee

Multi-drug resistant Acinetobacter baumannii is well-known for its rapid acclimatization in hospital environments. The ability of the bacterium to endure desiccation and starvation on dry surfaces for up to a month results in outbreaks of health care-associated infections. Previously, indole and its derivatives were shown to inhibit other persistent bacteria. We found that among 16 halogenated indoles, 5-iodoindole swiftly inhibited A. baumannii growth, constrained biofilm formation and motility, and killed the bacterium as effectively as commercial antibiotics such as ciprofloxacin, colistin, and gentamicin. 5-Iodoindole treatment was found to induce reactive oxygen species, resulting in loss of plasma membrane integrity and cell shrinkage. In addition, 5-iodoindole rapidly killed three Escherichia coli strains, Staphylococcus aureus, and the fungus Candida albicans, but did not inhibit the growth of Pseudomonas aeruginosa. This study indicates the mechanism responsible for the activities of 5-iodoindole warrants additional study to further characterize its bactericidal effects on antibiotic-resistant A. baumannii and other microbes.


2015 ◽  
Vol 60 (1) ◽  
pp. 57-63 ◽  
Author(s):  
Suvarna Krishnamoorthy ◽  
Bhavikkumar P. Shah ◽  
Hiu Ham Lee ◽  
Luis R. Martinez

ABSTRACTAcinetobacter baumanniiis a Gram-negative bacterium that causes nosocomial infections worldwide. This microbe's propensity to form biofilms allows it to persist and to survive on clinical abiotic surfaces for long periods. In fact,A. baumanniibiofilm formation and its multidrug-resistant nature severely compromise our capacity to care for patients in hospital environments. In contrast, microbicides such as cetrimide (CT) and chlorhexidine (CHX) play important roles in the prevention and treatment of infections. We assessed the efficacy of CT and CHX, either alone or in combination, in eradicatingA. baumanniibiofilms formed by clinical isolates, by using stainless steel washers to mimic hard abiotic surfaces found in hospital settings. We demonstrated that increasing amounts of each microbicide, alone or in combination, were able to damage and to reduce the viability ofA. baumanniibiofilms efficaciously. Interestingly, theadeBgene of the resistance-nodulation-cell division (RND) family is predominantly associated with acquired resistance to antimicrobials inA. baumannii. We showed that CT and CHX adversely modified the expression and function of the RND-type efflux pump AdeABC in biofilm-associatedA. baumanniicells. Furthermore, we established that these microbicides decreased the negative charges onA. baumanniicell membranes, causing dysregulation of the efflux pump and leading to cell death. Our findings suggest that CT and CHX, alone or in combination, can be used efficaciously for eradication ofA. baumanniifrom hospital surfaces, in order to reduce infections caused by this nosocomial agent.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Maryam Hazhirkamal ◽  
Omid Zarei ◽  
Mahsa Movahedi ◽  
Pezhman Karami ◽  
Leili Shokoohizadeh ◽  
...  

Abstract Background Acinetobacter baumannii is an opportunistic pathogen that can cause several kinds of nosocomial infections. Increasing antibiotic resistance as well as identifying genetic diversity and factors associated with pathogenicity and prevalence of this bacterium is important. The aim of this study was the investigation of molecular typing, biofilm production, and detection of carbapenemase genes in multidrug-resistant Acinetobacter baumannii isolated from different infection sites using ERIC-PCR in Iran. Methods Forty isolates of A. baumannii were obtained from various wards of the central hospital, in the west of Iran. Phenotypic identification and genetic diversity, biofilm production assay, and detection of Carbapenemase genes carried out. Results Tracheal samples 26 (61.9 %) are the most frequent isolates, and 95 % of isolates were identified as MDR. 32.5 % of all A. baumannii strains were capable to form a strong biofilm. It was founded that antimicrobial resistance patterns had a significant relationship with strong biofilm formation (P = 0.001). Most frequencies of the studied genes were in the order of VIM (81 %), SPM (45.2 %), and IMP (35.7 %) genes. The VIM gene was the most frequent in all isolates which were significant (P = 0.006). 14 different ERIC-types were observed including 7 common types and 7 unique or single types. F type is the largest common type consisting of nine isolates and B, D, and E types contain two isolates separately. Conclusions ERIC-PCR technique was used to genetically classify A. baumannii isolates as one of the most common microorganisms in nosocomial infections.


mBio ◽  
2016 ◽  
Vol 7 (2) ◽  
Author(s):  
Grace E. Richmond ◽  
Laura P. Evans ◽  
Michele J. Anderson ◽  
Matthew E. Wand ◽  
Laura C. Bonney ◽  
...  

ABSTRACTThe opportunistic pathogenAcinetobacter baumanniiis able to persist in the environment and is often multidrug resistant (MDR), causing difficulties in the treatment of infections. Here, we show that the two-component system AdeRS, which regulates the production of the AdeABC multidrug resistance efflux pump, is required for the formation of a protective biofilm in anex vivoporcine mucosal model, which mimics a natural infection of the human epithelium. Interestingly, deletion ofadeBimpacted only on the ability of strain AYE to form a biofilm on plastic and only on the virulence of strain Singapore 1 forGalleria mellonella. RNA-Seq revealed that loss of AdeRS or AdeB significantly altered the transcriptional landscape, resulting in the changed expression of many genes, notably those associated with antimicrobial resistance and virulence interactions. For example,A. baumanniilacking AdeRS displayed decreased expression ofadeABC,pilgenes,comgenes, and apgaC-like gene, whereas loss of AdeB resulted in increased expression ofpilandcomgenes and decreased expression of ferric acinetobactin transport system genes. These data define the scope of AdeRS-mediated regulation, show that changes in the production of AdeABC mediate important phenotypes controlled by AdeRS, and suggest that AdeABC is a viable target for antimicrobial drug and antibiofilm discovery.IMPORTANCEAcinetobacter baumanniiis a nosocomial pathogen and is an increasing problem in hospitals worldwide. This organism is often multidrug resistant, can persist in the environment, and forms a biofilm on environmental surfaces and wounds. Overproduction of efflux pumps can allow specific toxic compounds to be pumped out of the cell and can lead to multidrug resistance. This study demonstrates the role of theA. baumanniiefflux pump AdeB, and its regulator AdeRS, in multidrug resistance, epithelial cell killing, and biofilm formation. Deletion of the genes encoding these systems led to increased susceptibility to antibiotics, decreased biofilm formation on biotic and abiotic surfaces, and decreased virulence. Our data suggest that inhibition of AdeB could prevent biofilm formation or colonization in patients byA. baumanniiand provides a good target for drug discovery.


2021 ◽  
Vol 14 (4) ◽  
pp. 1660-1665
Author(s):  
Sarojini K

The epsA associated biofilm formation attributes to potent virulence in the drug resistant strains of Acinetobacter baumannii. This study is aimed to molecularly characterize the epsA gene among the multidrug resistant clinical isolates of A. baumannii and to assess the frequency of the same in different drug resistant groups. To detect the biofilm formation among the selected MDR strains of A. baumannii, semi-quantitative adherent bioassay was performed using crystal violet staining method. Further PCR amplification was done to screen the presence of epsA gene with further sequencing of the amplicons. Pearson’s correlation analysis was done to check the correlation of the occurrence of epsA gene with drug resistant strains (p-value<0.05). 58.9%, 31.5% and 0.9% of the strains were recorded as high grade, low grade and negative biofilm formers under biofilm assay. The epsA gene was observed in 14 MDR strains (19.17%) of A. baumannii with an amplicon size of 451bp. Co-occurrence of epsA gene was 100% in β-lactam, cephem and folate resistant strains followed by 71.4% among aminoglycosides, 57.1% against carbapenems and 14.2% in fluoroquinolone and efflux pump mediated resistant strains. The findings of the study suggest the co-occurrence of epsA gene mediated biofilm formation among the multidrug resistant strains of A. baumannii. Further studies on the same helps in designing new vaccines and drugs for the prevention and treatment of A. baumannii infections.


2018 ◽  
Vol 201 (2) ◽  
Author(s):  
Carly Ching ◽  
Brendan Yang ◽  
Chineme Onwubueke ◽  
David Lazinski ◽  
Andrew Camilli ◽  
...  

ABSTRACTAcinetobacter baumanniiis a Gram-negative opportunistic pathogen that is known to survive harsh environmental conditions and is a leading cause of hospital-acquired infections. Specifically, multicellular communities (known as biofilms) ofA. baumanniican withstand desiccation and survive on hospital surfaces and equipment. Biofilms are bacteria embedded in a self-produced extracellular matrix composed of proteins, sugars, and/or DNA. Bacteria in a biofilm are protected from environmental stresses, including antibiotics, which provides the bacteria with selective advantage for survival. Although some gene products are known to play roles in this developmental process inA. baumannii, mechanisms and signaling remain mostly unknown. Here, we find that Lon protease inA. baumanniiaffects biofilm development and has other important physiological roles, including motility and the cell envelope. Lon proteases are found in all domains of life, participating in regulatory processes and maintaining cellular homeostasis. These data reveal the importance of Lon protease in influencing keyA. baumanniiprocesses to survive stress and to maintain viability.IMPORTANCEAcinetobacter baumanniiis an opportunistic pathogen and is a leading cause of hospital-acquired infections.A. baumanniiis difficult to eradicate and to manage, because this bacterium is known to robustly survive desiccation and to quickly gain antibiotic resistance. We sought to investigate biofilm formation inA. baumannii, since much remains unknown about biofilm formation in this bacterium. Biofilms, which are multicellular communities of bacteria, are surface attached and difficult to eliminate from hospital equipment and implanted devices. Our research identifies multifaceted physiological roles for the conserved bacterial protease Lon inA. baumannii. These roles include biofilm formation, motility, and viability. This work broadly affects and expands understanding of the biology ofA. baumannii, which will permit us to find effective ways to eliminate the bacterium.


2019 ◽  
Vol 6 (Supplement_2) ◽  
pp. S314-S314
Author(s):  
Alita Miller ◽  
Sarah McLeod ◽  
Tarun Mathur ◽  
Ian Morrissey

Abstract Background The incidence of infections caused by multidrug-resistant Acinetobacter baumannii is increasing at an alarming rate in Southeast Asia and other parts of the world. Sulbactam (SUL) has intrinsic antibacterial activity against A. baumannii; however, the prevalence of β-lactamases in this species has limited its therapeutic use. Durlobactam (ETX2514, DUR) is a novel β-lactamase inhibitor with broad-spectrum activity against Ambler class A, C and D β-lactamases. DUR restores SUL in vitro activity against multidrug-resistant A. baumannii. Against >3,600 globally diverse, clinical isolates from 2012–2017, addition of 4 mg/L DUR reduced the SUL MIC90 from >32 to 2 mg/L. SUL-DUR is currently in Phase 3 clinical development for the treatment of infections caused by carbapenem-resistant Acinetobacter spp.The goal of this study was to determine the activity of SUL-DUR and comparator antibiotics (amikacin (AMK), ampicillin-sulbactam (AMP-SUL), cefoperazone-sulbactam (CFP-SUL) and meropenem (MEM)) against A. baumannii isolated from hospitalized patients in India. Methods A total of 121 clinical A. baumannii isolates from multiple hospital settings and infection sources were collected between 2016–2019 from six geographically diverse hospitals in India. Species identification was performed by MALDI-TOF. Susceptibility of these isolates to SUL-DUR (10µg/10µg) and comparator antibiotics was determined by disk diffusion using CLSI methodology and interpretive criteria, except for CFP-SUL, for which resistance was defined using breakpoints from the CFP-SUL package insert. Results As shown in Table 1, resistance of this collection of isolates to marketed agents was extremely high. In contrast, based on preliminary breakpoint criteria, only 11.5% of isolates were resistant to SUL-DUR. Conclusion The in vitro antibacterial activity of SUL-DUR was significantly more potent than comparator agents against multidrug-resistant A. baumannii isolates collected from diverse sites in India. These data support the continued development of SUL-DUR for the treatment of antibiotic-resistant infections caused by A. baumannii. Disclosures All authors: No reported disclosures.


Sign in / Sign up

Export Citation Format

Share Document