scholarly journals Nephroprotective Role of Beta vulgaris L. Root Extract against Chlorpyrifos-Induced Renal Injury in Rats

2019 ◽  
Vol 2019 ◽  
pp. 1-9 ◽  
Author(s):  
Gadah Albasher ◽  
Rafa Almeer ◽  
Saud Alarifi ◽  
Saad Alkhtani ◽  
Manal Farhood ◽  
...  

Organophosphorus pesticides (OPs) are widely used for agricultural and housekeeping purposes. Exposure to OPs is associated with the progression of several health issues. Antioxidant agents may be powerful candidates to minimise adverse reactions caused by OPs. The aim of the present study was to evaluate the nephroprotective effects of red beetroot extract (RBR) against chlorpyrifos- (CPF-) induced renal impairments. CPF induced kidney dysfunction, as demonstrated by changes in serum creatinine and urea levels. Moreover, CPF exposure induced oxidative stress in the kidneys as determined by increased malondialdehyde and nitric oxide levels, decreased glutathione content, decreased catalase, superoxide dismutase, glutathione peroxidase, and glutathione reductase activities, and decreased nuclear factor (erythroid-derived 2)-like-2 factor expression. In addition, CPF induced inflammation in renal tissue as evidenced by increased release of tumor necrosis factor-alpha and interleukin-1β and upregulation of inducible nitric oxide synthase. Furthermore, CPF promoted cell death as demonstrated by decreased Bcl-2 and increased Bax and caspase-3 levels. Treatment with RBR one hour prior to CPF treatment blocked the effects observed in response to CPF alone. Our results suggest that RBR could be used to alleviate CPF-induced nephrotoxicity through antioxidant, anti-inflammatory, and antiapoptotic activities.

2004 ◽  
Vol 72 (7) ◽  
pp. 4081-4089 ◽  
Author(s):  
Kara L. Cummings ◽  
Rick L. Tarleton

ABSTRACT Immune control of many intracellular pathogens, including Trypanosoma cruzi, is reported to be dependent on the production of nitric oxide. In this study, we show that mice deficient in inducible nitric oxide synthase (iNOS or NOS2) exhibit resistance to T. cruzi infection that is comparable to that of wild-type mice. This is the case for two iNOS-deficient mouse strains, Nos2tm1Lau and Nos2 N5, infected with the Brazil or Tulahuen strain of T. cruzi. In all cases, blood parasitemia, tissue parasite load, and survival rates are similar between wild-type and iNOS-deficient mice. In contrast, both wild-type and Nos2tm1Lau mice died within 32 days postinfection when treated with the nitric oxide synthase inhibitor aminoguanidine. Increased transcription of NOS1 or NOS3 is not found in iNOS-knockout (KO) mice, indicating that the absence of nitric oxide production through iNOS is not compensated for by increased production of other NOS isoforms. However, Nos2tm1Lau mice exhibit enhanced expression of tumor necrosis factor alpha, interleukin-1, and macrophage inflammatory protein 1α compared to that of wild-type mice, and these alterations may in part compensate for the lack of iNOS. These results clearly show that iNOS is not required for control of T. cruzi infection in mice.


2004 ◽  
Vol 100 (3) ◽  
pp. 540-546 ◽  
Author(s):  
Caiyun Zhong ◽  
Yamei Zhou ◽  
Hong Liu

Background Volatile anesthetic preconditioning (APC) protects against myocardial ischemia-reperfusion (IR) injury, but the precise mechanisms underlying this phenomenon remain undefined. To investigate the molecular mechanism of APC in myocardial protection, the activation of nuclear factor (NF) kappaB and its regulated inflammatory mediators expression were examined in the current study. Methods Hearts from male rats were isolated, Langendorff perfused, and randomly assigned to one of three groups: (1) the control group: hearts were continuously perfused for 130 min; (2) the IR group: 30 min of equilibration, 15 min of baseline, 25 min of ischemia, 60 min of reperfusion; and (3) the APC + IR group: 30 min of equilibration, 10 min of sevoflurane exposure and a 5-min washout, 25 min of global ischemia, 60 min of reperfusion. Tissue samples were acquired at the end of reperfusion. NF-kappaB activity was determined by electrophoretic mobility shift assay. The NF-kappaB inhibitor, IkappaB-alpha, was determined by Western blot analysis. Myocardial inflammatory mediators, including tumor necrosis factor alpha, interleukin 1, intercellular adhesion molecule 1, and inducible nitric oxide synthase, were also assessed by Western blot analysis. Results Nuclear factor kappaB-DNA binding activity was significantly increased at the end of reperfusion in rat myocardium, and cytosolic IkappaB-alpha was decreased. Supershift assay revealed the involvement of NF-kappaB p65 and p50 subunits. APC with sevoflurane attenuated NF-kappaB activation and reduced the expression of tumor necrosis factor alpha, interleukin 1, intercellular adhesion molecule 1, and inducible nitric oxide synthase. APC also reduced infarct size and creatine kinase release and improved myocardial left ventricular developed pressure during IR. Conclusions The results of this study indicate that attenuation of NF-kappaB activation and subsequent down-regulation of NF-kappaB-dependent inflammatory gene expression plays an important role in the protective mechanism of APC against acute myocardial IR injury.


Sign in / Sign up

Export Citation Format

Share Document