scholarly journals Wide CPW-Fed Multiband Wearable Monopole Antenna with Extended Grounds for GSM/WLAN/WiMAX Applications

2019 ◽  
Vol 2019 ◽  
pp. 1-14 ◽  
Author(s):  
Danvir Mandal ◽  
S. S. Pattnaik

A novel wide coplanar waveguide- (CPW-) fed multiband wearable monopole antenna is presented. The multiband operation is achieved by generating slanted monopoles of different lengths from an isosceles triangular patch. The different operating frequencies of the proposed antenna are associated with the lengths of the slanted monopoles, which are determined under quarter wavelength resonance condition. The CPW line is used as a multiband impedance-matching structure. The two grounds are slightly extended for better impedance matching. The proposed antenna is designed to cover the 1800 MHz GSM, 2.4 GHz/5.2 GHz WLAN, and 3.5 GHz WiMAX bands. The measured peak gains and impedance bandwidths are about 4.18/3.83/2.6/2.94 dBi and 410/260/170/520 MHz for the 1550-1960 MHz/2.3-2.56 GHz/3.4-3.57 GHz/5.0-5.52 GHz bands, respectively. The calculated averaged specific absorption rate (SAR) values at all the resonant frequencies are well below the standard limit of 2 W/kg, which ensures its feasibility for wearable applications. The antenna performance under different bending configurations is investigated and the results are presented. The reflection coefficient characteristics of the proposed antenna is also measured for different on-arm conditions and the results are compared. A good agreement between experimental and simulation results validates the proposed design approach.

Frequenz ◽  
2016 ◽  
Vol 70 (11-12) ◽  
Author(s):  
Sarthak Singhal ◽  
Amit Kumar Singh

AbstractA CPW-fed 8-shaped monopole antenna for ultra wideband applications is presented. It consists of a 8-shaped monopole and two quarter elliptical coplanar waveguide ground planes. An impedance bandwidth from 5.4 GHz to 23.83 GHz is achieved. The radiation patterns are observed to be omnidirectional and bidirectional in E-and H-plane respectively at lower resonances. At higher frequencies, the radiation patterns are found to be nearly omnidirectional in both planes. The group delay variation is also observed to be constant in the operating frequency range. A good agreement is found between the simulation and experimental results. The designed antenna structure has miniaturized dimensions and wider bandwidth as compared to other already reported monopole structures.


2015 ◽  
Vol 2015 ◽  
pp. 1-6
Author(s):  
Chien-Jen Wang ◽  
Dai-Heng Hsieh

A small dual-band monopole antenna with coplanar waveguide (CPW) feeding structure is presented in this paper. The antenna is composed of a meandered monopole, an extended conductor tail, and an asymmetrical ground plane. Tuning geometrical structure of the ground plane excites an additional resonant frequency band and thus enhances the impedance bandwidth of the meandered monopole antenna. Unlike the conventional monopole antenna, the new resonant mode is excited by a slot trace of the CPW transmission line. The radiation performance of the slot mode is as similar as that of the monopole. The parametrical effect of the size of the one-side ground plane on impedance matching condition has been derived by the simulation. The measured impedance bandwidths, which are defined by the reflection coefficient of −6 dB, are 186 MHz (863–1049 MHz, 19.4%) at the lower resonant band and 1320 MHz (1490–2810 MHz, 61.3%) at the upper band. From the results of the reflection coefficients of the proposed monopole antenna, the operated bandwidths of the commercial wireless communication systems, such as GSM 900, DCS, IMT-2000, UMTS, WLAN, LTE 2300, and LTE 2500, are covered for uses.


2015 ◽  
Vol 2015 ◽  
pp. 1-7 ◽  
Author(s):  
Yanjie Wu ◽  
Yunliang Long

This paper presents a long-term evolution (LTE) 700 MHz band multiple-input-multiple-output (MIMO) antenna, and high isolation between the two symmetrical antenna elements is obtained without introducing extra decoupling structure. Each antenna element is a combination antenna of PIFA and a meander monopole antenna. The end of the PIFA and the meander monopole antenna are, respectively, overlapped with the 50 Ω microstrip feed line, the two overlapping areas produce additional capacitance which can be considered decoupling structures to enhance the isolation for the MIMO antenna, as well as the impedance matching of the antenna elements. The MIMO antenna is etched on FR4 PCB board with dimensions of 71 × 40 × 1.6 mm3; the edge-to-edge separation of the two antenna elements is only nearly 0.037 λat 700 MHz. Both simulation and measurement results are used to confirm the MIMO antenna performance; the operating bandwidth is 698–750 MHz withS11≤−6 dB andS21≤−23 dB.


Author(s):  
Mohammad Alibakhshi-Kenari

In this article, a new construction of a small planar dual-band fed printed monopole antenna based on coplanar waveguide is suggested. Impedance matching for dual-band operations is obtained by embedding three vertical strips with different sizes in the U-shaped conductor-backed plane. The main problem of the designed antenna is the measuring of the specifications with the Agilent 8722ES Vector Network Analyzer, when the coaxial cable is connected to the antenna. Hence, in this paper a new method for decoupling the cable from the antenna is presented. This method is based on using the ferrite bead. The ferrite bead reduces the cable radiation, so that its position plays the important part in the antenna radiation characteristics. The fabricated antenna includes the benefits of the miniaturized size and dual-band operating specifications, so that the mentioned properties have been achieved without modifying the coplanar-waveguide-ground surface or radiator patch. The antenna has the small size of 15 × 15 × 0.8 mm3and bandwidths with S11 < −10 dB about 2.2 GHz (5.05–7.25 GHz) for WLAN-band or IEEE 802.11a-band and 5.2GHz (7.6–12.8 GHz) for X-band, which correspond to 36 and 51% practical bandwidths, respectively. The antenna measured peak gains are about 1.8 dBi at WLAN-band and 4.3 dBi at X-band.


Author(s):  
Brajlata Chauhan ◽  
Suresh Chandra Gupta ◽  
Sandip Vijay

<span>This work investigated a miniaturized slotted conformal antenna array for multiband application. Three guard lines are incorporated to the side of main patch and top of main patch to reduce surface current for planner surface and observe the effect of guard line due to which it resonate at three frequencies in X band and Ku band to be useful for multiband. A rectangular slot is etched at center of patches to increase the current path for wide band application. A quarter wavelength feeding network is used with good agreement of impedance matching. The main lobe width and direction shows through the radiation pattern which remains stable even it is significantly curved. This structure is wrapped around a cylinder with a diameter of 41.4 mm in the circumferential direction. It is observed that the planner antenna array operating at 8.4 GHz, 11.2 GHz &amp;18.2 GHz with a return loss of -20 dB to -45 dB with fractional BW of 25% at 3rd frequency range and the directivity from 3.4 dBi-6.8 dBi. By doing some alteration in dimensions for the conformal antenna producing fractional BW of 20% and the directivity 5.5 to 9.1 dBi at resonating frequencies of 8.4 GHz, 11.4 GHz, and 17.5 GHz. This proposed array is simulated on CST software.</span>


Author(s):  
Rowdra Ghatak ◽  
Swapan K. Ghoshal ◽  
Durbadal Mondal ◽  
Anup K. Bhattacharjee

A dual wideband design of Sierpinski carpet fractal-shaped planar monopole antenna with a coplanar waveguide (CPW) feed is proposed in this letter. Wide impedance bandwidth of 22% at lower resonance from 4.88 to 6.08 GHz and 41.7% at higher one, which ranges from 9.5 to 14.5 GHz, is obtained. Measured realized antenna gain is around 5 dBi at the lower band centered around 5.5 GHz and are around 4.5 dBi at the higher band. A fabricated prototype is developed with good agreement between simulation and measurement.


Author(s):  
Dong-jin Kim ◽  
Young-min Moon ◽  
Se-hyun Park ◽  
Young-eil Kim ◽  
Kyeong-sik Min

2004 ◽  
Vol 27 (4) ◽  
pp. 237-245 ◽  
Author(s):  
Nihad Dib ◽  
Qiu Zhangb ◽  
Ulrich Rohde

A new model for the microstrip line interdigital capacitor is proposed. This model consists of calculating the2N×2N Y-matrix of theNcoupled lines using the multiple coupled line tool. Then, this matrix is reduced to a2×2matrix using simple circuit theory. The capacitance at the end of each finger is taken into consideration using closed-form expression of the coplanar waveguide open-end capacitance. This model can predict the resonances that might appear around the quarter-wavelength frequency. These resonances are caused by the coupling between the fingers and exist only in capacitors with four fingers or more. Very good agreement is obtained between the results of our model and those obtained using the software HFSS and measurements.


2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Quanqi Zhang ◽  
Yuanxin Li ◽  
Zhixi Liang ◽  
Hong-Zhou Tan ◽  
Yunliang Long

A multi-band monopole antenna with the improved inverted-trapezoidal coplanar waveguide (CPW) feeding is presented. The antenna has a simple planar structure, and occupies an area of 15 mm × 50 mm. The proposed antenna consists of an improved inverted-trapezoidal CPW-fed patch, and a series of monopole strips with different length. This monopole antenna utilizes the advantages of the CPW feeding to simplify the structure of the antenna into a single metallic level and achieve high antenna gain. The improved inverted-trapezoidal CPW-fed patch and a meander shorting strip lead to a better impedance matching result and multi-band operation. The experimental results of the proposed antenna are shown and discussed. The antenna generates two wide bands centered at about 900 and 2200 MHz to cover the GSM850/GSM900/DCS/PCS/UMTS/LTE2300/2500 bands and the 2.4 GHz WLAN operation. Meanwhile the antenna covers the 4 G bands of China Telecom (2370–2390 MHz/2635–2655 MHz), China Unicom (2300–2320 MHz/2555–2575 MHz) and China Mobile (1880–1900 MHz/2320–2370 MHz/2575–2635 MHz), too.


Sign in / Sign up

Export Citation Format

Share Document